Сайт о телевидении

Сайт о телевидении

» » Разница между микроконтроллером и микропроцессором. Микропроцессор или микроконтроллер? Что выбрать для своей разработки? В чем отличие микропроцессора от микроконтроллера

Разница между микроконтроллером и микропроцессором. Микропроцессор или микроконтроллер? Что выбрать для своей разработки? В чем отличие микропроцессора от микроконтроллера

Общие сведения об устройстве микроконтроллеров и основные даты

Микроконтроллеры являются неотъемлемой частью быта современного человек. Применяются от детских игрушек до АСУТП. Благодаря использованию микроконтроллеров, инженерам получилось достигнуть большую скорость изготовления и качество продукции практических во всех сферах производства.

Данный материал является общим обзором ключевых дат в истории развития микроконтроллеров. Это не техническое пособие, многие тонкости и моменты упущены.

Предпосылки для появления микропроцессорных и микроконтроллерных систем

Чтобы разобраться с причинами появления и развития микропроцессорной техники взгляните на характеристики и особенности первых компьютеров. ENIAC - первый компьютер, 1946 год. Вес - 30 т, занимал целое помещение или 85 кубических метров объёма в пространстве. Большое тепловыделение, энергопотребление, постоянные неполадки из-за разъёмов электронных ламп. Окислы приводили к исчезновению контактов и лампы теряли связь с платой. Требовали постоянного обслуживания.

Компьютерная техника развивалась и к концу 60-х в мире их было порядка 30 тысяч, в их числе как универсальные ЭВМ, так и мини-компьютеры. Мини - того времени были размерами со шкаф.

Кстати, в 1969 году уже был изобретен прообраз интернета - ARPANET (англ. Advanced Research Projects Agency Network).

Параллельно развивались полупроводниковые технологии - в 1907 работы по детекторам и электролюминесценции полупроводников. В 1940-е диоды и транзисторы. Это всё привело к появлению интегральных технологий. Роберт Нойс в 1959 году изобрел интегральную микросхему (дальше ИМС или МС).

Важно:

Фирма Intel - внесла огромный вклад в развитие микроконтроллеров. Основатели: Роберт Нойс, Гордон Мур и Эндрю Гроув. Основана в 1968 году.

До определённых пор фирма производила п/п запоминающие устройства. Первым была МС «3101» - 64 разряда, Шотки - биполярная статическая ОЗУ.

Следующим было изобретение «4004» - микропроцессора с 2300 п/п транзисторов в своём составе, по производительности не хуже, чем ENIAC, а размером меньше ладони. Т.е. размер 4004-го микропроцессора был на много порядков меньше.

Архитектура, программирование, физическая реализация

Разработчиком архитектуры первого микропроцессора стал - Тед Хофф , системы команд - Стен Мейзор . Федерико Феджин - спроектировал кристалл. Но изначально компания Intel не владела всеми правами на этот чип, и, заплатив 60 000 долларов компании Busicom, получила полные права. Вскоре, последняя обанкротилась.

Для популяризации и внедрения новых технологи Intel вела как рекламную, так и образовательную кампанию.

Впоследствии и другие производители электроники объявляли о создании подобных устройств.

Это интересно:

4004 - 4-разрядная, p-МОП микросхема.

Следующим этапом стал выпуск в 1972 году процессора «8008». В отличие от предыдущей модели он уже больше похож на современные модели. 8008 - 8 разрядный, имеет аккумулятор, 6 регистров общего назначения, указатель стэка, 8 регистров адреса, команды ввода-вывода.

Событие:

А в 1973 году была изобретена наиболее удачная конфигурация микропроцессора, который до сих пор является классическим - это 8 разрядный «8080».

Через полгода у Intel появился серьезный конкурент - Motorola с процессором «6800», n-МОП технология, трёхшинную структуру с 16 разрядной шиной адреса. Более мощная система прерываний, для его питания достаточно оного напряжения, а не три, как у «8080». Кроме того, команды были проще и короче.

До нашего времени сохраняется противостояние семейств микропроцессоров этих производителей.

Ускорило скорость работы и расширило возможности микропроцессоров внедрение 16-разрядных микропроцесоров. Первым из них был разработан «8086» от Intel. Именно его использовали в компании IBM для создания первых персональных компьютеров.

Процессор «68000» - 16 разрядный ответ от «Motorola», использовался в компьютерах ATARI и Apple

Для широкой аудитории в роли ПК стали популярны ZX Spectrum . В них устанавливались процессоры «Z80», от Sinclair Research Ltd. Одна из основных причин популярности - не нужно покупать монитор, ведь спектрум, как современные приставки, подключался к телевизору, а обычный магнитофон как устройство для записи и хранения программ и данных.

Микроконтроллеры

Микро-ЭВМ - главный шаг массового применения компьютерной автоматизации в области управления. Так как в автоматизации основная задача контроль и регулирование параметров, то термин «контроллер» закрепился и в этой среде.

А первый патент в СССР на однокристальные микро-ЭВМ был выдан в 1971 году М. Кочрену и Г. Буну, из Texas Instruments. С этих пор на кристалле кремния кроме процессора размещали еще память, и дополнительные устройства.

Конец семидесятых - это новая волна конкуренции между Intel и Motorola. Причиной этому стали две презентации, а именно в 76 году Intel выпустила i8048, а Motorola, только в 78 - mc6801, который был совместим с раним микропроцессором mc6800.

Спустя 4 года, к 80 году, Intel выпускает популярны и до сих пор . Это было зарождение огромного семейства, которое живет и до сих пор. Ведущие мировые производители выпускают на этой архитектуры сильно модифицированные микроконтроллеры для широкого спектра задач.

Для своего времени он имел немыслимые 128 000 транзисторов. Это в четыре раза превосходило количество в i8086 процессоре.

В 2017 году, и последние десятилетие наиболее распространены следующие виды микроконтроллеров:

    8-битные микроконтроллеры PIC фирмы Microchip Technology и AVR фирмы Atmel;

    16-битные MSP430 фирмы TI;

    32-битные микроконтроллеры, архитектуры ARM. Она продаётся разработчиками различным фирмам, на базе которой выпускается масса различных продуктов.

В Советском союзе техника не стояла на месте. Ученные не только копировали наиболее удачные и интересные зарубежные разработки, но и занимались разработкой уникальных проектов. Таким образом к 1979 году в НИИ ТТ была разработана К1801ВЕ1, эта микроархитектура называлась «Электроника НЦ» и имела 16 разрядов.

Различия микроконтроллеров

Микроконтроллеры можно разделить по таким критериям:

    Разрядность;

    Система команд;

    Архитектура памяти.

Разрядность - это длина одного слова обрабатываемого контроллером или процессором, чем она больше, тем быстрее микроконтроллер может обработать большие массивы данных, но такой подход не всегда справедлив, для каждой задачи выдвигаются индивидуальные требования, как по скорости, так и по способу обработку, например, применение 32-х разрядного ARM микропроцессор для работы в простых устройствах, оперирующих с 8 битным словами может быть не обосновано как по удобству написания программы и обработки информации, так и по себе стоимость.

Однако, по статистике на 2017 год, стоимость таких контроллеров активно снижается, и, если так будет продолжаться и далее - он будет дешевле простейших PIC контроллеров, при наличии гораздо большем наборе функций. Не понятно только одно - это маркетинговый ход и занижение цены, или реальный технологический прогресс.

Деление происходит на:

Деление по типу системы команд:

    RISC-архитектура , или сокращенная система команд. Ориентирована на быстрое выполнение базовых команд за 1, реже 2 машинных цикла, а также имеет большое количество универсальных регистров, и более длинный способ доступа к постоянной памяти. Архитектурна характерна для систем под управление UNIX;

    СISC-архитектура , или полная система команд, характерна прямая работа с памятью, большее число команд, малое число регистров (ориентирована на работу с памятью), длительность команд от 1 до 4 машинных циклов. Пример - процессоры Intel.

Деление по типу памяти:

    Архитектура Фон-Неймана - основная черта общая область памяти для команд и данных, при работе с такой архитектурой в результате ошибки программиста данные могут записаться в область памяти программ и дальнейшее выполнение программы станет невозможным. Пересылка данных и выборка команды не может осуществляться одновременно по тем же причинам. Разработана в 1945 году.

    Гарвардская архитектура - раздельная память данных и память программ, использовалась в первые на компьютерах семейства Mark. Разработана в 1944 году.

Выводы

В результате внедрения микропроцессорных систем размеры устройств снизились, а функционал увеличился. Выбор архитектуры, разрядности, системы команд, структуры памяти - влияет на конечную стоимость устройства, поскольку при единичном производстве разница в цене может быть не значительно, но при тиражировании - более чем ощутимой.

Пошаговое обучение программированию и созданию устройств на микроконтроллерах AVR

У электронщиков, специализирующихся на проектировании микроконтроллерных устройств, существует термин "быстрый старт" . Относится он к случаю, когда надо в короткий срок опробовать микроконтроллер и заставить его выполнять простейшие задачи.

Цель состоит в том, чтобы, не углубляясь в подробности, освоить технологию программирования и быстро получить конкретный результат. Полное представление, навыки и умения появятся позже в процессе работы.

Освоить работу с микроконтроллерами в режиме "быстрый старт", научиться их программировать и создавать различные полезные умные электронные устройства можно легко с помощью обучающих видеокурсов Максима Селиванова в которых все основные моменты разложены по полочкам.

Методика быстрого изучения принципов работы с микроконтроллерами основывается на том, что достаточно освоить базовую микросхему, чтобы затем достаточно уверенно составлять программы к другим ее разновидностям. Благодаря этому первые опыты по программировании микроконтроллеров проходят без особых затруднений. Получив базовае знания можно приступать к разработке собственных конструкций.

На данный момент у Максима Селиванова есть 4 курса по созданию устройств на микроконтроллерах, построенные по принципу от простого к сложному.

Курс для тех, кто уже знаком с основами электроники и программирования, кто знает базовые электронные компоненты, собирает простые схемы, умеет держать паяльник и желает перейти на качественно новый уровень, но постоянно откладывает этот переход из-за сложностей в освоении нового материала.

Курс замечательно подойдет и тем, кто только недавно предпринял первые попытки изучить программирование микроконтроллеров, но уже готов все бросить от того, что у него ничего не работает или работает, но не так как ему нужно (знакомо?!).

Курс будет полезен и тем, кто уже собирает простенькие (а может и не очень) схемы на микроконтроллерах, но плохо понимает суть того как микроконтроллер работает и как взаимодействует с внешними устройствами.

Курс посвящен обучению программирования микроконтроллеров на языке Си. Отличительная особенность курса - изучение языка на очень глубоком уровне. Обучение происходит на примере микроконтроллеров AVR. Но, в принципе, подойдет и для тех, кто использует другие микроконтроллеры.

Курс рассчитан на подготовленного слушателя. То есть, в курсе не рассматриваются базовые основы информатики и электроники и микроконтроллеров. Но, что бы освоить курс понадобятся минимальные знания по программированию микроконтроллеров AVR на любом языке. Знания электроники желательны, но не обязательны.

Курс идеально подойдет тем, кто только начал изучать программирование AVR микроконтроллеров на языке С и хочет углубить свои знания. Хорошо подойдет и тем, кто немного умеет программировать микроконтроллеры на других языках. И еще подойдет обычным программистам, которые хотят углубить знания в языке Си.

Этот курс для тех, кто не хочет ограничиваться в своем развитии простыми или готовыми примерами. Курс отлично подойдет тем, кому важно создание интересных устройств с полным пониманием того, как они работают. Курс хорошо подойдет и тем, кто уже знаком с программированием микроконтроллеров на языке Си и тем, кто уже давно программирует их.

Материал курса прежде всего ориентирован на практику использования. Рассматриваются следующие темы: радиочастотная идентификация, воспроизведение звука, беспроводной обмен данными, работа с цветными TFT дисплеями, сенсорным экраном, работа с файловой системой FAT SD-карты.

Дисплеи NEXTION представляют собой программируемые дисплеи с тачскрином и UART для создания самых разных интерфейсов на экране. Для программирования используется очень удобная и простая среда разработки, которая позволяет создавать даже очень сложные интерфейсы для различной электроники буквально за пару вечеров! А все команды передаются через интерфейс UART на микроконтроллер или компьютер. Материал курса составлен по принципу от простого к сложному.

Этот курс рассчитан на тех, кто хотя бы немного имеет опыта в программировании микроконтроллеров или arduino. Курс отлично подойдет и для тех, кто уже пытался изучать дисплеи . Из курса вы узнаете много новой информации, даже если думаете, что хорошо изучили дисплей!

Приближается осень, а вместе с ней наступит День знаний! Это отличная пора для новых дел, идей и начинаний и самое время для обучения. Используйте это время с пользой для прокачки своих знаний!

Полный курс обучения программированию микроконтроллеров со скидкой:

Выбор подходящего устройства, на котором будет основана ваша новая разработка, бывает не простым. Необходимо найти баланс между ценой, производительностью и энергопотреблением, а также учесть долгосрочные последствия этого выбора. Например, если используемое устройство, будь то микроконтроллер или микропроцессор, станет основой целого ряда новых продуктов.

Чем отличается микропроцессор и микроконтроллер?

Для начала давайте рассмотрим разницу между микроконтроллером (MCU) и микропроцессором (MPU). Обычно микроконтроллер использует встроенную флэш память, в которой хранятся и выполняется его программа. Благодаря этому, микроконтроллер имеет очень короткое время запуска и может выполнять код очень быстро. Единственное ограничение при использовании встроенной памяти - это ее конечный объем. Большинство микроконтроллеров, доступных на рынке, имеют максимальный объем флэш памяти ~2 мегабайта. Для некоторых приложений это может оказаться критическим фактором.

Микропроцессоры не имеют ограничений на размер памяти, поскольку для хранения программы и данных они используют внешнюю память. Программа обычно хранится в энергонезависимой памяти, такой как NAND или последовательная флэш память. При запуске программа загружается во внешнюю динамическую оперативную память и затем выполняется. Микропроцессор не способен запускаться так же быстро, как микроконтроллер, но объем оперативной и энергонезависимой памяти, которую можно подключить к процессору, может достигать сотен и даже тысяч мегабайт.

Другое отличие между микроконтроллером и микропроцессором - это система питания. Благодаря встроенному регулятору напряжения, микроконтроллеру необходимо только одно значение внешнего напряжения. Тогда как микропроцессору требуется несколько разных напряжений для ядра, периферии, портов ввода-вывода и т.д. О наличии этих напряжений на плате должен заботиться разработчик.

Что выбрать MPU или MCU?

Выбор микроконтроллера или микропроцессора определяется некоторыми аспектами спецификации разрабатываемого устройства. Например, требуется такое количество периферийный интерфейсных каналов, которое не может предоставить микроконтроллер. Или требования относительно пользовательского интерфейса невозможно выполнить, используя микроконтроллер, потому что у него не хватает памяти и быстродействия. Приступая к первой разработке, мы знаем, что продукт в дальнейшем может сильно измениться. В этом случае возможно лучшим решением будет использование какой-то готовой платформы. Так мы учтем запас вычислительной мощности и интерфейсных возможностей для будущих модификаций устройства.

Один из аспектов, которые сложно определить, это быстродействие, требуемое для работоспособности будущей системы. Количественно оценить этот критерий можно с помощью так называемой вычислительной мощности, которая измеряется в Dhrystone MIPS или DMIPS (Dhrystone - это синтетический тест производительности компьютеров, а MIPS - количество миллионов инструкций в секунду). Например, микроконтроллер Atmel SAM4 на базе ядра ARM Cortex-M4 обеспечивает 150 DMIPS, а микропроцессор на ядре ARM Cortex-A5, такой как Atmel SAM5AD3 может обеспечить до 850 DMIPS. Один из способов оценить требуемый DMIPS - это посмотреть какая производительность нужна для запуска части приложения. Запуск полноценной операционной системы (Linux, Android или Windows CE) для работы вашего приложения потребовал бы около 300 - 400 DMIPS. А если использовать для приложения RTOS, то достаточно всего 50 DMIPS. При использовании RTOS также требуется меньше памяти, поскольку ядро обычно занимает несколько килобайт. К сожалению полноценная операционная система требует для своего запуска блок управления памятью (MMU), что в свою очередь ограничивает тип процессорных ядер, которые могут быть использованы.

Для приложений, которые обрабатывают большие объемы чисел, требуется определенный запас DMIPS. Чем больше приложение ориентировано на числовую обработку, тем выше вероятность использования микропроцессора.

Серьезного обсуждения требует использование пользовательского интерфейса, будь то бытовая или промышленная электроника. Потребителям уже привычно пользоваться интуитивно понятными графическими интерфейсами, да и в промышленности все чаще используется этот метод взаимодействия с оператором.

Существует несколько факторов относительно пользовательского интерфейса. Во-первых, это дополнительная вычислительная нагрузка. Для такой интерфейсной библиотеки как Qt, которая широко используется на Linux`e, дополнительно потребуется 80-100 DMIPS. Во-вторых - это сложность пользовательского интерфейса. Чем больше вы используете анимации, эффектов и мультимедийного содержимого, чем выше разрешение изображения, тем большая производительность и память вам потребуется. Поэтому вероятнее всего здесь подойдет микропроцессор. С другой стороны, простой пользовательский интерфейс со статическим изображением на дисплее низкого разрешения может быть реализован и на микроконтроллере.

Другой аргумент в пользу микропроцессора - это наличие встроенного TFT LCD контроллера. Мало микроконтроллеров имеют в своем составе такой модуль. Можно поставить внешний TFT LCD контроллер и какие-то другие драйверы к микроконтроллеру, но нужно учитывать получаемую в итоге себестоимость изделия.

На рынке сейчас появляются флэш микроконтроллеры с TFT LCD контроллерами, но все же должно быть достаточное количество встроенной оперативной памяти для управления дисплеем. Например, 16-цветный QVGA 320х240 требует 150 кБ оперативной памяти чтобы выдавать изображение и обновлять дисплей. Это довольно большой объем ОЗУ и может потребоваться внешняя память, что тоже скажется на себестоимости.

Более сложные графические пользовательские интерфейсы, особенно использующие дисплеи размером больше 4,3 дюйма, требуют применения микропроцессоров. Если микропроцессоры доминируют в приложениях, где используется пользовательский интерфейс с цветным TFT экраном, то микроконтроллеры - короли сегментных или точечно-матричных LCD и других экранов с последовательным интерфейсом.

С точки зрения коммуникаций, большинство микроконтроллеров и микропроцессоров имеют в своем составе наиболее популярные . Но высокоскоростные интерфейсы, такие как HS USB 2.0, 10/100 Мбит/с Ethernet порты или гигабитные Ethernet порты, обычно есть только у микропроцессоров, потому что они лучше приспособлены к обработке больших объемов данных. Ключевой вопрос здесь - это наличие подходящих каналов и полосы пропускания для обработки потока данных. Приложения, использующие высокоскоростные подключения и ориентированные на операционную систему, требуют применения микропроцессоров.

Другой ключевой аспект, определяющий выбор между микроконтроллером и микропроцессором, это требование по детерминированному времени реакции приложения. Из-за процессорного ядра, встроенной флэш памяти и программного обеспечения в виде RTOS (операционной системы реального времени) или чистого Си кода, микроконтроллер будет определенно лидировать по этому критерию.

Заключительная часть нашего обсуждения будет касаться энергопотребления. Хотя у микропроцессора есть режимы пониженного энергопотребления, у типичного микроконтроллера их намного больше. Кроме того, внешнее аппаратное обеспечение микропроцессора осложняет его перевод в эти режимы. Фактическое потребление микроконтроллера значительно ниже, чем микропроцессора. Например, в режиме энергосбережения с сохранением регистров и оперативной памяти, микроконтроллер может потреблять в 10-100 раз меньше.

Заключение

Выбор между микроконтроллером и микропроцессором зависит от многих факторов, таких как производительность, возможности и бюджет разработки.

Вообще говоря, микроконтроллеры обычно используются в экономически оптимизированных решениях, где важное значение имеет стоимость изделия и энергосбережение. Они, например, широко используются в приложениях с ультра низким энергопотреблением, где требуется длительное время работы от батарей. Например, в пультах дистанционного управления, потребительских электросчетчиках, охранных системах и т.п. Также они используются там, где необходима высоко детерминированное поведение системы.

Микропроцессоры, как правило, применяются для создания функциональных и высокопроизводительных приложений. Они идеально подходят для промышленных и потребительских приложений на основе операционных систем, где интенсивно используются вычисления или требуется высокоскоростной обмен данными или дорогой пользовательский интерфейс.

И последнее. Выбирайте поставщика, предлагающего совместимые микроконтроллеры или микропроцессоры, чтобы иметь возможность мигрировать вверх или вниз, увеличивая повторное использование программного обеспечения.

В составе разных электронных устройств часто встречаются как микроконтроллеры, так и микропроцессоры. Оба этих компонента берут из памяти команды и по ним выполняют логические и арифметические операции, работая при этом с устройствами ввода/вывода и прочей периферией. Так в чём тогда разница?

Микроконтроллер

Микроконтроллер - (далее МК) это микросхема, предназначенная для программного управления электронными схемами. МК выполняется на одном кристалле. На нём расположено как вычислительное устройство, так и ПЗУ и ОЗУ. Кроме этого, в составе МК чаще всего находятся порты ввода/вывода, таймеры, АЦП , последовательные и параллельные интерфейсы. В некоторых даже можно заметить Wi-Fi-/Bluetooth-модуль и даже поддержку NFC.

Первый патент на микроконтроллер был выдан в 1971 году компании Texas Instruments . Инженеры этой компании предложили размещать на кристалле не только процессор, но и память с устройствами ввода/вывода.

Несмотря на то, что всё необходимое для работы микроконтроллера в нём уже есть, иногда они используются в паре с внешними периферийными устройствами. К примеру, когда внутренней ПЗУ не хватает (или она попросту отсутствует), подключают внешнюю. Именно так сделали с микроконтроллерами серии ESP. У ESP8266 встроенной памяти нет вообще, а у ESP32 есть незначительные 448 КБ. Поэтому к ним в корпус (точнее под радиатор) помещается flash-память ёмкостью 1–16 МБ.

Тогда почему бы не сделать какой-нибудь портативный компьютер на основе микроконтроллера? Дело в том, что вычислительной мощности у МК чаще всего достаточно мало. Её хватает на управление например, системой полива, микроволновкой или же каким-нибудь станком.

Например, одна из мощных плат платформы Arduino - Due. Она находится под управлением 32-битного AVR-микроконтроллера AT91SAM3X8E. Его тактовая частота 84 МГц. Постоянной памяти тут 512 КБ, а оперативной - 96 КБ. МК имеет 54 цифровых GPIO (12 из которых с поддержкой ШИМ), 12 аналоговых входов и 2 аналоговых выхода (ЦАП). Тут так же присутствуют различные интерфейсы, такие как UART, SPI, I2C.

Не смотря на такие незначительные характеристики, микроконтроллеры очень популярны. Они используются там, где не требуется большой вычислительной мощности - робототехника, контроллеры теплиц, бытовая техника.

Микропроцессор

С микропроцессором (далее МП) дела обстоят немного иначе. Он содержит в себе арифметико-логическое устройство, блок синхронизации и управления, запоминающие устройство, регистры и шину. То есть МП содержит в себе только то, что непосредственно понадобится для выполнения арифметический и логических операций. Все остальные комплектующие (ОЗУ, ПЗУ, устройства ввода/вывода, интерфейсы) нужно подключать извне.

Первые микропроцессоры появились тоже в начале 70-х. Самым популярным на тот момент считался . Это микропроцессор, разработанный компанией Intel и представленный 15 ноября 1971 года. Он имел внушающие на тот период характеристики:

  • 2300 транзисторов;
  • тактовая частота - 740 кГц;
  • разрядность регистров и шины - 4 бита;
  • техпроцесс - 10 мкм;
  • площадь кристалла: - 12 мм².

К слову, 4004 был выполнен в обычном DIP-16 корпусе. Этот МП является самой популярной микросхемой для коллекционирования. Некоторые экземпляры продаются по 400 $ за штуку. Менее раритетные стоят около 250 $.

Уже через пару лет 8-битные МП позволили создавать первые бытовые микрокомпьютеры.

Естественно, тут преимуществом является то, что к МП можно на выбор подключать разную периферию с разными характеристиками (что не во всех случаях можно на МК). Второе основное отличие микропроцессора от микроконтроллера в том, что МП имеют больше вычислительной мощности. Их не имеет смысла ставить в микроволновки и «умные» лампочки. Микропроцессоры применяют там, где вычислительная мощность МК уже не справляется - игровые приставки, сложные вычислительные устройства и приборы, гаджеты.

Получается, чтобы обеспечить работоспособность микропроцессора, нужно подключить ему хотя бы минимальный набор периферии. Минусы:

  1. Размер - если в случае МК всё уже находится в одном корпусе, то минимальный набор элементов для работы МП занимает больше места.
  2. Цена - обычно, вся «сборка» комплектующих для МП выходит гораздо дороже «голых» микроконтроллеров.
  1. Производительность - микропроцессоры обладают большей производительностью, чем микроконтроллеры.
  2. Выбор - в случае МП у вас есть возможность подобрать комплектующие. Это позволит поставить более подходящую под ваши цели периферию.

Применение

Микроконтроллер обладает явной простотой: требуется меньше аппаратного обеспечения, с ним легче работать на программном уровне, да и стоимость начинается с копеек. Но эта простота касается и производительности. Как говорилось выше, микроконтроллер не способен обеспечить высокую производительность наравне с микропроцессорами. Микропроцессоры хоть и требуют внешней коммутации «железа» и относительно МК сложны в работе, но они уже спокойно могут применяться в более сложных устройствах.

Однако иногда в сети появляются умельцы, которые впихивают в микроконтроллер ESP32

Удивительно, как небольшая часть технологии изменила лицо персональных компьютеров. С первого коммерческого микропроцессора (4-бит 4004), который был разработан Intel в 1971 году для более продвинутого и универсального 64-битного Itanium 2, микропроцессорная технология перешла в совершенно новую сферу архитектуры следующего поколения. Достижения в области микропроцессорной техники сделали персональные вычисления более быстрыми и надежными, чем когда-либо прежде. Если микропроцессор является сердцем компьютерной системы, микроконтроллер - это мозг. Как микропроцессор, так и микроконтроллер часто используются в синонимах друг друга из-за того, что они имеют общие функции и специально разработаны для приложений реального времени. Однако у них есть и их доля различий.

Что такое микропроцессор?

Микропроцессор - это интегрированный чип на основе кремния, имеющий только центральный процессор. Это сердце компьютерной системы, которая предназначена для выполнения множества задач, связанных с данными. Микропроцессоры не имеют RAM, ROM, IO контактов, таймеров и других периферийных устройств на чипе. Они должны быть добавлены извне, чтобы сделать их функциональными. Он состоит из ALU, который обрабатывает все арифметические и логические операции; блок управления, который управляет и управляет потоком инструкций по всей системе; и Register Array, который хранит данные из памяти для быстрого доступа. Они предназначены для приложений общего назначения, таких как логические операции в компьютерной системе. Проще говоря, это полностью функциональный процессор на единой интегральной схеме, который используется компьютерной системой для выполнения своей работы.

Что такое микроконтроллер?

Микроконтроллер похож на мини-компьютер с процессором, а также RAM, ROM, последовательные порты, таймеры и периферийные устройства ввода-вывода, встроенные в один чип. Он предназначен для выполнения конкретных задач, требующих определенной степени контроля, таких как пульт телевизора, светодиодная панель дисплея, интеллектуальные часы, транспортные средства, управление светофором, контроль температуры и т. Д. Это высококачественное устройство с микропроцессор, память и порты ввода / вывода на одном чипе. Это мозги компьютерной системы, которые содержат достаточно схем для выполнения определенных функций без внешней памяти. Поскольку в нем отсутствуют внешние компоненты, потребляемая мощность меньше, что делает его идеальным для устройств, работающих на батареях. Простой разговор, микроконтроллер - это полная компьютерная система с меньшим внешним оборудованием.

Разница между микропроцессором и микроконтроллером

1) Технология, используемая в микропроцессоре и микроконтроллере

Микропроцессор - это программируемый многоцелевой кремниевый чип, который является наиболее важным компонентом в компьютерной системе. Это, как сердце компьютерной системы, состоящее из ALU (Арифметической логической единицы), блока управления, декодеров команд и массива регистров. Микроконтроллер, с другой стороны, является сердцем встроенной системы, которая является побочным продуктом микропроцессорной технологии.

2) Архитектура микропроцессора и микроконтроллера

Микропроцессор - это просто интегральная схема без ОЗУ, ПЗУ или контактов ввода / вывода. В основном это относится к центральному процессору компьютерной системы, который извлекает, интерпретирует и выполняет команды, переданные ему. Он включает функции ЦП в единую интегральную схему. Микроконтроллеры, с другой стороны, являются более мощными устройствами, которые содержат схему микропроцессора и имеют ОЗУ, IO и процессор в одном чипе.

3) Работа микропроцессора и микроконтроллера

Для микропроцессора требуется внешняя шина для подключения к периферийным устройствам, таким как RAM, ROM, Analog и Digital IO, а также последовательные порты. ALU выполняет все арифметические и логические операции, поступающие с устройств памяти или ввода, и выполняет результаты на выходных устройствах. Микроконтроллер представляет собой небольшое устройство со всеми периферийными устройствами, встроенными в один чип, и предназначен для выполнения определенных задач, таких как выполнение программ для управления другими устройствами.

4) Память данных в микропроцессоре и микроконтроллере

Память данных является частью ПОС, которая содержит регистры специальных функций и регистры общего назначения. Он временно хранит данные и сохраняет промежуточные результаты. Микропроцессоры выполняют несколько инструкций, которые хранятся в памяти и отправляют результаты на выход. Микроконтроллеры содержат один или несколько процессоров вместе с ОЗУ и другими периферийными устройствами. CPU извлекает инструкции из памяти и выполняет результаты.

5) Хранение в микропроцессоре и микроконтроллере

Микропроцессоры основаны на архитектуре фон Неймана (также известной как модель фон Неймана и архитектура Принстона), в которой блок управления получает команды, назначая управляющие сигналы аппаратным средствам и декодирует их. Идея состоит в том, чтобы хранить инструкции в памяти вместе с данными, на которых действуют инструкции. Микроконтроллеры, с другой стороны, основаны на архитектуре Гарварда, где инструкции и данные программы хранятся отдельно.

6) Приложения микропроцессора и микроконтроллера

Микропроцессоры представляют собой устройство массовой памяти с одним чипом и встроены в несколько приложений, таких как контроль спецификации, управление светофором, контроль температуры, тестовые инструменты, система мониторинга в реальном времени и многое другое.Микроконтроллеры в основном используются в электрических и электронных схемах и устройствах с автоматическим управлением, таких как высококачественные медицинские инструменты, системы управления автомобильным двигателем, солнечные зарядные устройства, игровой автомат, управление светофором, промышленные устройства управления и т. Д.

Микропроцессор против микроконтроллера: сравнительная таблица

Резюме микропроцессора и микроконтроллера

Ключевое различие между этими терминами заключается в наличии периферийных устройств. В отличие от микроконтроллеров, микропроцессоры не имеют встроенной памяти, ПЗУ, последовательных портов, таймеров и других периферийных устройств, которые составляют систему. Для взаимодействия с периферийными устройствами требуется внешняя шина. С другой стороны, микроконтроллер имеет все периферийные устройства, такие как процессор, оперативная память, ПЗУ и IO, встроенные в один чип. Он имеет внутреннюю управляющую шину, которая недоступна дизайнеру. Поскольку все компоненты упакованы в один чип, он компактный, что делает его идеальным для крупномасштабных промышленных применений. Микропроцессор - это сердце компьютерной системы, а микроконтроллер - это мозг.

Микропроцессор обычно не имеет RAM, ROM и IO контактов. Он обычно использует свои контакты в качестве шины для взаимодействия с периферийными устройствами, такими как RAM, ROM, последовательные порты, цифровой и аналоговый ввода-вывода. Из-за этого он расширяется на уровне доски.

Микроконтроллер - это «все в одном», процессор, RAM, IO на одном чипе, поэтому вы не можете (скажем) увеличить объем доступной RAM или количество портов ввода-вывода. Управляющая шина является внутренней и недоступной дизайнеру платы.

Это означает, что микропроцессор, как правило, может быть встроен в более крупные приложения общего назначения, чем микроконтроллер. Микроконтроллер обычно используется для более специализированных приложений.

Все это очень общие утверждения. Есть чипы, которые размывают границы.

However, as I mentioned, the line gets blurry. For example, recent Intel/AMD processors add a memory controller on the chip (previously it was in the chipset).