Сайт о телевидении

Сайт о телевидении

» » Понятие алгоритма. Свойства алгоритма. Виды алгоритмов. Способы описания алгоритмов. Замечание о методах, алгоритмах и программах

Понятие алгоритма. Свойства алгоритма. Виды алгоритмов. Способы описания алгоритмов. Замечание о методах, алгоритмах и программах

Практически все в нашем мире подчиняется каким-то законам и правилам. Современная наука не стоит на месте, благодаря чему человечеству известна масса формул и алгоритмов, следуя которым, можно рассчитать и воссоздать множество действий и строений, созданных природой, и воплотить в жизнь идеи, придуманные человеком.

В этой статье мы разберем основные понятия алгоритма.

История появления алгоритмов

Алгоритм - понятие, появившиеся в XII веке. Само слово "алгоритм" происходит от латинской интерпретации имени известного математика среднего востока Мухаммеда аль Хорезми, который написал книгу "Об индийском счете". В этой книге описано, как правильно записывать натуральные числа, используя арабские цифры, и приведено описание алгоритма действий столбиком над такими числами.

В XII веке книга "Об индийском счете" была переведена на латинский язык, тогда-то и появилось данное определение.

Взаимодействие алгоритма с человеком и машиной

Создание алгоритма требует творческого подхода, поэтому новый список последовательных действий может создать только живое существо. А вот для исполнения уже существующих инструкций фантазию иметь не обязательно, с этим справится даже бездушная техника.

Отличным примером точного исполнения заданной инструкции является пустая микроволновая печь, которая продолжает работать, несмотря на отсутствие пищи внутри нее.

Субъект или объект, которому не обязательно вникать в суть алгоритма, называется формальным исполнителем. Человек тоже может стать формальным исполнителем, однако в случае нерентабельности того или иного действия мыслящий исполнитель может все сделать по-своему. Поэтому основными исполнителями являются компьютеры, микроволновые печи, телефоны и другая техника. Понятие алгоритма в информатике имеет самое важное значение. Каждый алгоритм составляется с расчетом на конкретного субъекта, с учетом допустимых действий. Те объекты к которым субъект может применить инструкции, составляют среду исполнителя.

Практически все в нашем мире подчиняется каким-то законам и правилам. Современная наука не стоит на месте, благодаря чему человечеству известна масса формул и алгоритмов, следуя которым, можно рассчитать и воссоздать множество действий и творений природы и воплотить в жизнь идеи, придуманные человеком. В этой статье мы разберем основные понятия алгоритма.

Что такое алгоритм?

Большинство действий, которые мы выполняем в течение своей жизни, требуют соблюдений ряда правил. От того, насколько верное представление имеет человек о том что, как и в какой последовательности он должен сделать, зависит качество и результат выполнения поставленных перед ним задач. С детства родители пытаются выработать в своем чаде алгоритм основных действий, например: проснуться, заправить постель, умыться и почистить зубы, сделать зарядку, позавтракать и т. д., список, который человек всю жизнь выполняет с утра тоже можно считать своеобразным алгоритмом.

Алгоритм - обозначающее подборку инструкций, которые необходимо выполнять человеку для того, чтобы решить определенную задачу.

Вообще, алгоритм имеет множество определений, несколько ученых характеризуют его по-разному.

Если алгоритм, применяемый человеком ежедневно, у каждого свой, и может изменятся в зависимости от возраста и ситуаций, в которых оказывается исполнитель, то свод действий, которые нужно выполнить для решения математической задачи или для использования техники, един для всех и всегда остается неизменным.

Существует разное понятие тоже разнятся - к примеру, для человека, который преследует какую-либо цель, и для техники.

В наш век информационных технологий люди ежедневно выполняют свод инструкций, созданных до них другими людьми, ведь техника требует при использовании точного исполнения ряда действий. Поэтому основная задача преподавателей в школах - научить детей пользоваться алгоритмами, быстро схватывать и изменять уже существующие правила в соответствии со сложившейся ситуацией. Структура алгоритма является одним из тех понятий, которое изучается на уроке математики и информатики в каждой школе.

Основные свойства алгоритма

1. Дискретность (последовательность отдельных действий) - любой алгоритм должен представляться в виде ряда простых действий, каждое из которых должно начинаться после завершения предыдущего.

2. Определенность - каждое действие алгоритма должно быть настолько простым и понятным, чтобы у исполнителя не возникало вопросов и не оставалось свободы действий.

3. Результативность - описание алгоритма должно быть понятным и законченным, чтобы после выполнения всех инструкций задача достигала логичного конца.

4. Массовость - алгоритм должен быть применим к целому классу задач, решить которые можно, лишь поменяв в алгоритме цифры. Хотя есть мнение, что последний пункт относится не к алгоритмам, а ко всем математическим методам в целом.

Часто в школах, чтобы дать детям более понятное описание алгоритмов, учителя приводят в пример приготовление пищи по кулинарной книге, изготовление лекарства по рецепту или процесс мыловарения на основе мастер-класса. Однако, учитывая второе свойство алгоритма, в котором говорится о том, что каждый пункт алгоритма должен быть настолько понятным, чтобы его мог выполнить абсолютно любой человек и даже машина, можно прийти к выводу что любой процесс, требующий проявления хоть какой-то фантазии, алгоритмом назвать нельзя. А готовка и рукоделие требуют определенных навыков и хорошо развитого воображения.

Существуют разные типы алгоритмов, но есть три основных.

Цикличный алгоритм

В таком типе некоторые пункты повторяются по несколько раз. Список действий, которые необходимо повторить для достижения цели, называется телом алгоритма.

Итерация цикла — это выполнение всех пунктов, входящих в тело цикла.
Части цикла, которые постоянно выполняются определенное количество раз, называются циклом с фиксированным числом итераций.

Те части цикла, частота повторения которых зависит от ряда условий, называются неопределёнными.

Самый простой вид цикла — это фиксированный.

Существует два вида цикличных алгоритмов:

    Цикл с предусловием. В этом случае тело цикла проверяет свое условие до того, как он будет выполнен.

    Цикл с постусловием. В проверка условия происходит после окончания выполнения цикла.

Линейные типы алгоритмов

Инструкции таких схем выполняются однократно в той последовательности, в которой они представлены. Например, можно считать процесс заправки постели или чистки зубов. Также к этому типу относятся математические примеры, где присутствуют лишь действия сложения и вычитания.

Разветвляющийся алгоритм

В разветвляющимся типе есть несколько вариантов действий, какое из них будет применено, зависит от условия.

Пример. Вопрос: "Идет дождь?" Варианты ответов: "Да" или "Нет". Если "да" — откройте зонт, если "нет" — положите зонт в сумку.

Вспомогательный алгоритм

Вспомогательный алгоритм можно использовать в других алгоритмах, указав лишь его название.

Термины, встречающиеся в алгоритмах

Условие находится между словами "если" и "тогда".

Например: если вы знаете английский язык, тогда нажмите один. В этом предложении условием будет часть фразы «вы знаете английский язык».

Данные — сведения, которые несут определенную смысловую нагрузку и представлены в таком виде, чтобы их можно было передавать и использовать для данного алгоритма.

Алгоритмический процесс — решение задачи по алгоритму с применением определенных данных.

Структура алгоритма

Алгоритм может иметь различную структуру. Для того чтобы описать алгоритм, понятие которого зависит и от его строения, можно воспользоваться целым рядом различных способов, например: словесный, графический, с помощью специально разработанного алгоритмического языка.

Какой из способов будет использован, зависит от нескольких факторов: от сложности задачи, от того, насколько нужно детализировать процесс решения задачи и т. д.

Графический вариант построения алгоритма

Графический алгоритм — понятие, подразумевающие под собой разложение действий, которые нужно выполнить для решения определенной задачи, по определенным геометрическим фигурам.

Изображаются не как попало. Для того чтобы их мог понять любой человек применяются чаще всего блок-схемы и структурограммы Насси-Шнейдермана.

Также блок-схемы изображаются в соответствии с ГОСТ-19701-90 и ГОСТ-19.003-80.
Графические фигуры, применяемые в алгоритме, делятся на:

    Основные. Основные изображения применяются для обозначения операций, нужных для обработки данных при решении задачи.

    Вспомогательные. Вспомогательные изображения нужны для обозначения отдельных, не самых важных, элементов решения задачи.

В графическом алгоритме используемые для обозначения данных, называются блоками.

Все блоки идут в последовательности "сверху вниз" и "слева направо" — это правильное направление потока. При правильной последовательности линии, соединяющие между собой блоки, не показывают направление. В остальных случаях направление линий обозначается с помощью стрелок.

У правильной схемы алгоритма не должно быть больше одного выхода из обрабатывающих блоков и менее двух выходов из блоков, отвечающих за и проверку выполнения условий.

Как правильно построить алгоритм?

Структура алгоритма, как было сказано выше, должна строиться по ГОСТ, иначе она не будет понятна и доступна окружающим.

Общая методика по записи включает в себя следующие пункты:

Название, по которому будет понятно, какую задачу можно решить с помощью этой схемы.

У каждого алгоритма должны быть четко обозначены начало и конец.

У алгоритмов должны быть четко и ясно описаны все данные, как входные, так и выходные.

При составлении алгоритма следует отметить действия, которые позволят производить нужные для решения задачи действия над выбранными данными. Примерный вид алгоритма:

  • Имя схемы.
  • Данные.
  • Начало.
  • Команды.
  • Конец.

Правильное построение схемы существенно облегчит вычисление алгоритмов.

Геометрические фигуры, отвечающие за разные действия в алгоритме

Горизонтально расположенный овал - начало и конец (знак завершения).

Горизонтально расположенный прямоугольник — вычисление или другие действия (знак процесса).

Горизонтально расположенный параллелограмм — ввод или вывод (знак данных).

Горизонтально расположенный ромб — проверка условия (знак решения).

Вытянутый, горизонтально расположенный шестиугольник — модификация (знак подготовки).

Модели алгоритмов представлены ниже на рисунке.

Формульно-словестный вариант построения алгоритма.

Формульно-словестные алгоритмы записываются в произвольной форме, на профессиональном языке той области, к которой относится задача. Описание действий таким способом осуществляют с помощью слов и формул.

Понятие алгоритма в информатике

В компьютерной сфере все строится на алгоритмах. Без четких указаний, введенных в виде специального кода, не будет работать ни одна техника или программа. На уроках информатики ученикам стараются дать основные понятия алгоритмов, научить пользоваться ими и самостоятельно их создавать.

Создание и использование алгоритмов в информатике - процесс более творческий, чем, например, выполнение указаний к решению задачи в математике.

Существует также специальная программа «Алгоритм», которая помогает людям, несведущим в области программирования, создавать свои собственные программы. Такой ресурс сможет стать незаменимым помощником для тех, кто делает первые шаги в информатике и хочет создавать свои игры или любые другие программы.

С другой стороны, любая программа — алгоритм. Но если алгоритм несет в себе лишь действия, которые нужно выполнять, вставляя свои данные, то программа уже несет в себе готовые данные. Еще одно отличие — это то, что программа может быть запатентована и являться частной собственностью, а алгоритм нет. Алгоритм — понятие более обширное, нежели программа.

Вывод

В этой статье мы разобрали понятие алгоритма и его виды, узнали, как правильно записывать графические схемы.

Каждому из нас в повседневной жизни постоянно приходится решать задачи различной сложности, например, как добраться до школы или спортивной секции в условиях ограниченного времени, как успеть выполнить намеченные на день дела. Некоторые задачи настолько сложны, что их решение требует длительных размышлений. Другие, наоборот, мы решаем уже автоматически, так как сталкиваемся с ними каждый день на протяжении многих лет (почистить зубы, заправить постель, перейти улицу и т.д.). В большинстве случаев решение задачи можно разделить на несколько простых этапов.
Пример 1. Приведем решение задачи «Переход дороги по пешеходному переходу»:
1) встать на тротуаре лицом к пешеходному переходу;
2) посмотреть налево;
3) если слева от вас нет движущихся в вашем направлении автомобилей или мотоциклов, перейти дорогу до середины, иначе подождать пока они проедут и вернуться к пункту 2;
4) остановиться на середине дороги;
5) посмотреть направо;
6) если справа от вас нет движущихся в вашем направлении автомобилей или мотоциклов, перейти оставшуюся часть дороги, иначе подождать пока они проедут и вернуться к пункту 5.

Аль-Хорезми (780-850 н.э. – арабский математик IX века; от европеизированного произношения имени аль-Хорезми возник термин «алгоритм»).

Последовательность шагов, приведенная в примере 1, является алгоритмом решения задачи "Переход дороги по пешеходному переходу". Исполнитель этого алгоритма – человек. Объекты этого алгоритма – дорога, автомобили, мотоциклы.

Для решения любой задачи надо знать, что дано и что следует получить, то есть у задачи есть исходные данные (объекты) и искомый результат. Для получения результатов необходимо знать способ решения задачи, то есть располагать алгоритмом.

Приведенное определение не является определением в математическом смысле слова, это – описание понятия алгоритма, раскрывающее его сущность. Оно не является формальным, потому что в нем используются такие неуточняемые понятия, как «система предписаний», «действия исполнителя», «объект».

Понятие алгоритма, являющееся фундаментальным понятием математики и информатики, возникло задолго до появления вычислительных машин.

Первоначально под словом «алгоритм» понимали способ выполнения арифметических действий над десятичными числами. В дальнейшем это понятие стали использовать для обозначения любой последовательности действий, приводящей к решению поставленной задачи.

Приведем пример известного алгоритма – Алгоритма Евклида нахождения наибольшего общего делителя (НОД) делением двух положительных целых чисел.

Пример 2 . Даны два положительных целых числа x и y . Пусть x y, если это не так, то поменяем значения x и y местами.
1) Разделим y на x с остатком.
2) Если остаток от деления r равен 0, то число x является НОД. Стоп.
3) Если остаток от деления не равен нулю, то положим y = x , x = r и перейдем на шаг 1.

Любой алгоритм существует не сам по себе, он всегда предназначен для определенного исполнителя . Алгоритм описывается в командах исполнителя , который этот алгоритм будет выполнять. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя . Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.

4.1.2. Свойства алгоритма

Значение слова «алгоритм» очень похоже по значению на слова «рецепт», «метод», «способ». Но, однако, любой алгоритм, в отличие от рецепта или способа, обязательно обладает следующими свойствами.

1. Дискретность. Выполнение алгоритма разбивается на последовательность законченных действий-шагов, и только выполнив одно действие, можно приступать к выполнению следующего. Произвести каждое отдельное действие исполнителю предписывает специальное указание в записи алгоритма, называемое командой .

Пример 3. Необходимо выполнить арифметические вычисления S = (x + 5) – y · 2.
Очевидно, что это выражение удобно разбить на 3 действия:
1) Сложить аргументы в скобках x и 5
2) Умножить y на 2
3) Вычесть из результата, полученного на первом шаге, результат, полученный на втором шаге.

Стоит заметить, что если исполнитель начнет выполнять 3-е действие раньше, чем дождется результата выполнения второго действия, то результат нельзя будет получить.

2. Детерминированность. Каждая команда алгоритма определяет однозначное действие исполнителя, и однозначно определяет, какая команда должна выполняться следующей. То есть если алгоритм многократно применяется к одному и тому же набору входных данных, то каждый раз получаются одни и те же промежуточные результаты и тот же выходной результат.

3. Понятность. Алгоритм не должен содержать предписаний, смысл которых может восприниматься исполнителем неоднозначно, то есть запись алгоритма должна быть настолько четкой и полной, чтобы у исполнителя не возникло потребности в принятии каких-либо самостоятельных решений. Стоит помнить, что алгоритм всегда рассчитан на выполнение «неразмышляющим» исполнителем.
Пример 4 . Рассмотрим алгоритма «Погладить белье».
1) Взять гладильную доску.
2) Установить доску на полу рядом с электрической розеткой.
3) Взять утюг.
4) Включить утюг в розетку рядом с гладильной доской.
5) Взять вещь для глажки.
6) Погладить вещь.
7) Если есть ещё вещи, перейти к шагу 5.

В этом алгоритме объектами являются гладильная доска, утюг, электрическая розетка, вещи для глажки. Все эти команды понятны для девочки 12 лет, но для девочки двух лет, они не являются понятными, а, значит, она не может быть исполнителем этого алгоритма.

4. Результативность . Под этим свойством понимается содержательная определенность результата каждого шага и алгоритма в целом. При точном исполнении команд алгоритма процесс должен прекратиться за конечное число шагов, и при этом должен быть получен ответ на вопрос задачи. В качестве одного из возможных ответов может быть и установление того факта, что задача решений не имеет. Свойство результативности содержит в себе свойство конечности – завершение работы алгоритма за конечное число шагов.

Анекдот . На работе хватились программиста – пропал. День нет, два. На звонки не отвечает. Решили проверить, что да как. Пришли к нему домой, а там, в холодной ванне сидит программист с полупустой бутылкой шампуня в руке. Отняли у него бутылку и читают инструкцию: «Нанести на влажные волосы, намылить, подождать три минуты, смыть, повторить».

Пример 5. Человек вытирает книги в шкафу. Есть набор понятных команд ему.
1) Взять самую левую книгу на верхней полке;
2) Вытереть книгу;
3) Поставить книгу на место;
4) Если справа есть книги, взять следующую книгу, иначе, если есть полки ниже, перейти к шагу 1.

Неразмышляющий исполнитель будет выполнять эти команды последовательно и никогда не остановится, так как в четвертом шаге забыли указать спуститься на полку ниже.

5. Массовость. Алгоритм пригоден для решения любой задачи из некоторого класса задач, то есть алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма.

4.1.3. Алгоритмы и инструкции

Возникает вопрос, возможна ли ситуация, что способ решения задачи есть, но алгоритмом он не является? Оказывается да, такие ситуации возможны. Не каждый способ решения задачи является алгоритмом.
Пример 6 . Опишем метод построения перпендикуляра к прямой MN , проходящей через заданную точку А с помощью линейки и циркуля:
1) Отложить в обе стороны от точки A на прямой MN циркулем отрезки равной длины с концами B и C .
2) Увеличить раствор циркуля до радиуса, в полтора-два раза больше длины отрезков AB и AC .
3) Провести указанным раствором циркуля дуги окружностей с центрами в точка B и C так, чтобы они охватили точку А и образовали две точки пересечения друг с другом (D и E ).
4) Взять линейку, приложить её к точкам D и E и соединить их отрезком.
При правильном построении отрезок пройдёт через точку A и будет являться перпендикуляром к прямой.

Указанный способ рассчитан на исполнителя-человека и не является алгоритмом, так как он не обладает свойством детерминированности. Детерминированность подразумевает, что на каждом шаге мы будем получать на одинаковых данных один и тот же результат, а в нашем случае исполнитель сам может сделать выбор на первом и втором шаге, от которого будет зависеть результат шага. На первом шаге исполнитель должен выбрать произвольный раствор циркуля, что позволит ему при повторном выполнении инструкций получить другой результат на этом шаге. Аналогично и на втором шаге результат зависит от выбора исполнителем раствора циркуля.

Кроме того, есть задачи, которые человек, вообще говоря, решать умеет, не зная четкого алгоритма их решения. Например, если перед человеком положить фотографии лошадей и коров и попросить определить, на каких фотографиях изображены коровы, а на каких лошади, то человек интуитивно определит, на каких фотографиях мы видим коров, а на каких – лошадей. Причем большинство его ответов будут правильными. Но написать формальный алгоритм решения этой задачи не представляется возможным.

Дадим уточненное понятие алгоритма, которое опять же не является определением в математическом смысле слова, но более формально описывает понятие алгоритма.

Представления о программах среднестатистического пользователя весьма ограничены и основаны на опыте запуска и работы в приложениях. Мы знаем, что существуют программисты, пишущие программы, а наше дело — воспользоваться результатами их труда. Об алгоритмах люди, закончившие школу энное время назад, вспоминают в контексте теории алгебры, смутно представляя, что эти знания уж точно не пригодятся. А если приходится столкнуться с пересечением этих понятий — большинство из нас теряется, не находя связей между алгоритмами и программами, и, значит, не понимая поставленной задачи. Иногда эти понятия объединяют, считая, что “алгоритм” — более профессиональное и точное обозначение “программы”. Чтобы заполнить пробелы в представлениях, посмотрим, что все же стоит за терминологией.

Определение

Алгоритм — инструкция, включающая определенный четкий порядок действий, совершаемых для выполнения поставленной задачи. Число действий всегда конечно.

Программа (компьютерная, прежде всего) — запись последовательности инструкций, исполняемых компьютером.

Сравнение

В чем разница между алгоритмом и программой ясно уже из терминологии. Казалось бы, в обоих случаях мы видим упорядоченные действия, приводящие к конечному результату. Как понятно из определений, программа может состоять из нескольких алгоритмов, однако иерархия “общее — частное” здесь не прослеживается. Алгоритм — это вообще любая инструкция, в которой четко перечислены действия. Например, для сборки шкафа. Программой она, конечно, являться не будет. Алгоритм может существовать в любой форме: его можно запомнить, записать в блокнот, зарисовать в виде схемы, продиктовать, так как в основе его — логическая составляющая, а не формальная. Программа же — понятие формальное. Она представляет собой именно запись набора алгоритмов, причем запись на одном из языков программирования, понятных вычислительной машине. Это может быть не только наш привычный компьютер, но и блок управления любого прибора. Таким образом, алгоритм можно определить как метод или схему воплощения идеи, программу — как ее реализацию конкретными средствами.

Еще одно отличие программы от алгоритма — оперирование конкретными данными в процессе выполнения. Если алгоритм представляет собой только описание действий, требующихся для достижения цели, то программа содержит и описание данных в том числе. Алгоритм может быть массовым, то есть предназначаться для решения не одной задачи, а класса задач. Вместе с тем к его свойствам относят еще дискретность и определенность. Алгоритм подразумевает совершение элементарных действий над элементарными объектами, однако для разных исполнителей элементарность будет разной.

Понятие алгоритма гораздо шире, нежели программы: базовое понятие математики. Компьютерная программа является объектом права интеллектуальной собственности, алгоритм же к таковым не относится.

Выводы сайт

  1. Алгоритм — инструкция, программа — запись последовательности инструкций.
  2. Алгоритм может быть представлен в любом виде, программа — на языке программирования.
  3. Программа включает описание данных и действий, алгоритм — только действий.
  4. Алгоритм может быть предназначен для решения класса задач.
  5. Алгоритм является базовым понятием математики.
  6. Программа является объектом авторского права.

Сегодня компьютерные технологии тесно вошли в нашу жизнь. Они внесли в словарь обычного человека множество терминов, значения которых ему не всегда понятны. Но пользуются ими все. Например, что такое алгоритм? Четкого ответа рядовой юзер вам дать не сможет, но знать это необходимо, так как мы сталкиваемся с этим каждый день.

История происхождения термина

Понятие об алгоритме впервые было сформировано благодаря математику по имени Мухаммед Аль-Хорезми. Он жил на Востоке в 8-9-м веках и написал два великих труда. Первый из них дал начало слову «алгебра», а второй - понятию «алгоритм». Он обозначал арифметические операции, которые мы знаем как сложение, вычитание, умножение и деление. В 1957 году в одном из изданий английского словаря авторы посчитали, что алгоритм - это понятие устаревшее. Опять оно активно вошло в обиход лишь с появлением компьютеров. Им обозначали действия, которые входили в определенный процесс. Но он не обязательно должен быть только математическим. Тут подразумевается алгоритм действий любого характера, например, приготовления какого-либо блюда. С того времени это понятие не сходит с уст почти всех людей.

Попытки определения термина

Долгое время этот термин рассматривался исключительно как алгоритм чисел и действий с ними. Ведь и сама математика была по большей части прикладной наукой. Формулы, которые применяются для вычислений, в то время и считались алгоритмами. Шаги, которые выполнялись при решении, были элементарными, а сами вычисления - очень громоздкими и отнимали много времени и сил. Математики даже не задумывались над тем, чтобы дать определение этому понятию. Но со временем наука все больше развивалась и появлялись объекты, которые раньше не встречались (матрицы, векторы, множества и т. д.). Всеми ими нужно было оперировать. Это и дало толчок к пониманию того, что алгоритм - это непростое понятие, и его нужно в точности определить для дальнейшего использования. Ученые разделились во мнениях по поводу этого вопроса. Одни считали, что алгоритм применим ко всему, другие же сомневались, что каждую проблему можно решить с его помощью. Последняя точка зрения оказалась верной, но обосновать ее можно было, лишь дав точное определение понятию «алгоритм».

Что обозначает термин «алгоритм»?

Каждый день человеку приходится решать задачи, которые имеют разную сложность. К простым мы так привыкли, что действия для их решения совершаем автоматически. Над сложными же нужно изрядно поразмыслить. Когда появляется проблема, мы решаем ее поэтапно, действуя шагами. Так и в математике, например, для нахождения неизвестного в уравнении нужно действовать пошагово. Эти операции, постепенно ведущие к решению поставленной задачи, и называются алгоритмом. Алгоритм - это последовательность действий, которые в отдельности являются его шагами. Они имеют определенное место и должны строго идти друг за другом. Существуют классы алгоритмов, их называют классами сложности. К каждому из них относят определенное множество задач, которые имеют примерно одинаковую сложность решения.

Свойства, общие для всех алгоритмов

Помимо алгоритмов, в нашем мире существует множество других инструкций. Но благодаря некоторым свойствам мы можем отличить его от остальных. К ним относятся:

  • Дискретность - схема алгоритма предвидит решение поставленной задачи через последовательные действия, которые выполняются в строгой очередности.
  • Определенность - все поставленные условия четкие и не имеют какой-либо двузначности. Алгоритм действий, таким образом, не дает места для любых импровизаций. Это позволяет механически все выполнять, не нуждаясь в дополнительных подсказках.
  • Результативность - за определенное число шагов алгоритм всегда дает правильное решение задачи.
  • Массовость - алгоритм - это решение проблемы, имеющее общий вид. То есть он применим для всех задач определенного класса, независимо от исходных данных. Их выбирают из некого поля под названием "область применимости алгоритма".

Виды алгоритмов

В зависимости от разных условий, таких как цель, путь решения, начальные данные, алгоритмы делятся на:

  • Механические - жесткая, единственно верная последовательность для достижения требуемого результата (обеспечение работы двигателя и т. д.).
  • Гибкие: 1) вероятностные - имеют несколько путей для достижения верного решения; 2) эвристические - схема алгоритма, которая не имеет однозначной программы действий (предписания и т. д.), ведь она основана на личных качествах человека, его опыте.
  • Вспомогательные - ранее разработанные и полностью предназначенные для разрешения конкретной задачи.

Алгоритмы в информатике

Для информатики алгоритмы имеют особое значение. В этой науке их разделяют на такие виды:

  1. Линейный - все действия выполняются последовательно, друг за другом.
  2. Разветвляющийся алгоритм - это такой, в котором выполнение определенного условия приводит к выбору одного из двух возможных вариантов дальнейших действий.
  3. Циклический - одни и те же действия повторяются над разными исходными данными, таким образом подбираются наиболее подходящие.

Структура алгоритмов

Алгоритмы имеют свою структуру, которая обычно отображается в схеме. Схемой алгоритма называют его графическое изображение в виде связанных друг с другом блоков. Каждый из них отображает один из шагов алгоритма. Описание конкретного действия содержится внутри каждого блока. Такие схемы обычно чертятся для облегчения программирования, так как они наглядны и дают возможность зрительно воспринять объем работы, которую требуется выполнить. Человек может осмыслить процесс, скорректировать его еще до возникновения ошибок.

Правила составления алгоритмов

  • Первым правилом является то, что нужно определить большое количество объектов, которые смогут поддаться построенному алгоритму. Программист с помощью кодировки переводит их в данные. Они бывают входные и выходные. Первые служат для начала работы, вторые становятся ее результатом. Это называется преобразованием данных.
  • Второе правило говорит о том, что работа с алгоритмом требует свободной памяти. Ведь без нее не будет возможности разместить входные данные, работать с ними и получить выходные. Память состоит из ячеек. Если одной из них дать имя, она станет переменной.
  • Третье правило уже описывалось выше как одна из характеристик алгоритма, а именно - дискретность. То есть алгоритм состоит из отдельных операций, или шагов.
  • Четвертое правило напоминает о детерминированности алгоритма. То есть после каждого действия нужно указать, какое будет следующим, либо остановить процесс.
  • Последнее правило гласит, что после определенного числа шагов алгоритм завершает свою работу, имея тот или иной результат. А какой именно, указывает сам программист.

Таким образом, алгоритм - это сложное понятие, которое до появления ЭВМ использовалось только в математике и считалось устаревшим. Сегодня же его применяют во всех сферах жизни, одной из самых важных является информатика.

Одним из фундаментальных понятий в информатике является понятие алгоритма. Происхождение самого термина «алгоритм» связано с математикой. Это слово происходит от Algorithmi - латинского написания имени Мухаммеда аль-Хорезми (787 - 850) выдающегося математика средневекового Востока. В своей книге "Об индийском счете" он сформулировал правила записи натуральных чисел с помощью арабских цифр и правила действий над ними столбиком. В дальнейшем алгоритмом стали называть точное предписание, определяющее последовательность действий, обеспечивающую получение требуемого результата из исходных данных. Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством. Создание алгоритма, пусть даже самого простого, - процесс творческий. Он доступен исключительно живым существам, а долгое время считалось, что только человеку. В XII в. был выполнен латинский перевод его математического трактата, из которого европейцы узнали о десятичной позиционной системе счисления и правилах арифметики многозначных чисел. Именно эти правила в то время называли алгоритмами.

Данное выше определение алгоритма нельзя считать строгим - не вполне ясно, что такое «точное предписание» или «последовательность действий, обеспечивающая получение требуемого результата». Поэтому обычно формулируют несколько общих свойств алгоритмов, позволяющих отличать алгоритмы от других инструкций.

Такими свойствами являются:

· Дискретность (прерывность, раздельность) - алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

· Определенность - каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

· Результативность (конечность) - алгоритм должен приводить к решению задачи за конечное число шагов.

· Массовость - алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

На основании этих свойств иногда дается определение алгоритма, например: “Алгоритм - это последовательность математических, логических или вместе взятых операций, отличающихся детерменированностью, массовостью, направленностью и приводящая к решению всех задач данного класса за конечное число шагов”. Такая трактовка понятия “алгоритм” является неполной и неточной. Во-первых, неверно связывать алгоритм с решением какой-либо задачи. Алгоритм вообще может не решать никакой задачи. Во-вторых, понятие “массовость” относится не к алгоритмам как к таковым, а к математическим методам в целом. Решение поставленных практикой задач математическими методами основано на абстрагировании - мы выделяем ряд существенных признаков, характерных для некоторого круга явлений, и строим на основании этих признаков математическую модель, отбрасывая несущественные признаки каждого конкретного явления. В этом смысле любая математическая модель обладает свойством массовости. Если в рамках построенной модели мы решаем задачу и решение представляем в виде алгоритма, то решение будет “массовым” благодаря природе математических методов, а не благодаря “массовости” алгоритма.

Разъясняя понятие алгоритма, часто приводят примеры “бытовых алгоритмов”: вскипятить воду, открыть дверь ключом, перейти улицу и т. д.: рецепты приготовления какого-либо лекарства или кулинарные рецепты являются алгоритмами. Но для того, чтобы приготовить лекарство по рецепту, необходимо знать фармакологию, а для приготовления блюда по кулинарному рецепту нужно уметь варить. Между тем исполнение алгоритма - это бездумное, автоматическое выполнение предписаний, которое в принципе не требует никаких знаний. Если бы кулинарные рецепты представляли собой алгоритмы, то у нас просто не было бы такой специальности - повар.

Правила выполнения арифметических операций или геометрических построений представляют собой алгоритмы. При этом остается без ответа вопрос, чем же отличается понятие алгоритма от таких понятий, как “метод”, “способ”, “правило”. Можно даже встретить утверждение, что слова “алгоритм”, “способ”, “правило” выражают одно и то же (т.е. являются синонимами), хотя такое утверждение, очевидно, противоречит “свойствам алгоритма”.

Само выражение “свойства алгоритма” некорректно. Свойствами обладают объективно существующие реальности. Можно говорить, например, о свойствах какого-либо вещества. Алгоритм - искусственная конструкция, которую мы сооружаем для достижения своих целей. Чтобы алгоритм выполнил свое предназначение, его необходимо строить по определенным правилам. Поэтому нужно говорить не о свойствах алгоритма, а о правилах построения алгоритма, или о требованиях, предъявляемых к алгоритму.

Первое правило - при построении алгоритма прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные.

Это правило позволяет сразу отделить алгоритмы от “методов” и “способов”. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.

Второе правило - для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти.

В школьной “теории алгоритмов” эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил. В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило - дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.

Четвертое правило - детерменированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки.

Пятое правило - сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Итак, алгоритм - неопределяемое понятие теории алгоритмов. Алгоритм каждому определенному набору входных данных ставит в соответствие некоторый набор выходных данных, т. е. вычисляет (реализует) функцию. При рассмотрении конкретных вопросов в теории алгоритмов всегда имеется в виду какая-то конкретная модель алгоритма.

Любая работа на компьютере - это есть обработка информации. Работу компьютера можно схематически изобразить следующим образом:

“Информация” слева и “информация” справа - это разные информации. Компьютер воспринимает информацию извне и в качестве результата своей работы выдает новую информацию. Информация, с которой работает компьютер, носит название “данные”.

Компьютер преобразует информацию по определенным правилам. Эти правила (операции, команды) заранее занесены в память компьютера. В совокупности эти правила преобразования информации называются алгоритмом. Данные, которые поступают в компьютер, называются входными данными. Результат работы компьютера - выходные данные. Таким образом, алгоритм преобразует входные данные в выходные:


Теперь можно поставить вопрос: а может ли человек обрабатывать информацию? Конечно, может. В качестве примера можно привести обычный школьный урок: учитель задает вопрос (входные данные), ученик отвечает (выходные данные). Самый простой пример: учитель дает задание - умножить 6 на 3 и результат написать на доске. Здесь числа 6 и 3 - входные данные, операция умножения - алгоритм, результат умножения - выходные данные:


Вывод: решение математических задач - частный случай преобразования информации. Компьютер (по-английски означает вычислитель, на русском языке - ЭВМ, электронная вычислительная машина) был создан как раз для выполнения математических расчетов.

При решении любой математической задачи мы составляем алгоритм решения. Но прежде мы сами и выполняли этот алгоритм, то есть доводили решение до ответа. Теперь же мы будем только писать, что нужно сделать, но вычисления проводить не будем. Вычислять будет компьютер. Наш алгоритм будет представлять собой набор указаний (команд) компьютеру.

Когда мы вычисляем какую-либо величину, мы записываем результат на бумаге. Компьютер записывает результат своей работы в память в виде переменной. Поэтому каждая команда алгоритма должна включать указание, в какую переменную записывается результат.

Трактовка работы алгоритма как преобразования входных данных в выходные естественным образом подводит нас к рассмотрению понятия “постановка задачи”. Для того чтобы составить алгоритм решения задачи, необходимо из условия выделить те величины, которые будут входными данными и четко сформулировать, какие именно величины требуется найти. Другими словами, условие задачи требуется сформулировать в виде “Дано... Требуется” - это и есть постановка задачи.

Алгоритм применительно к вычислительной машине - точное предписание, т.е. набор операций и правил их чередования, при помощи которого, начиная с некоторых исходных данных, можно решить любую задачу фиксированного типа.

Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

· Механические алгоритмы , или иначе детерминированные, жесткие (например, алгоритм работы машины, двигателя и т.п.);

· Гибкие алгоритмы , например стохастические, т.е. вероятностные и эвристические.

Механический алгоритм задает определенные действия, обозначая их в единственной и достоверной последовательности, обеспечивая тем самым однозначный требуемый или искомый результат, если выполняются те условия процесса, задачи, для которых разработан алгоритм.

· Вероятностный (стохастический) алгоритм дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.

· Эвристический алгоритм (от греческого слова “эврика”) - это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя. К эвристическим алгоритмам относят, например, инструкции и предписания. В этих алгоритмах используются универсальные логические процедуры и способы принятия решений, основанные на аналогиях, ассоциациях и прошлом опыте решения схожих задач.

· Линейный алгоритм - набор команд (указаний), выполняемых последовательно во времени друг за другом.

· Разветвляющийся алгоритм - алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.

· Циклический алгоритм - алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов.

Цикл программы - последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.

Вспомогательный (подчиненный) алгоритм (процедура) - алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи. В некоторых случаях при наличии одинаковых последовательностей указаний (команд) для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм.

На всех этапах подготовки к алгоритмизации задачи широко используется структурное представление алгоритма.

Структурная (блок-, граф-) схема алгоритма - графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок (линий перехода) блоков - графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия.

Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, т.к. зрительное восприятие обычно облегчает процесс написания программы, ее корректировки при возможных ошибках, осмысливание процесса обработки информации.

Можно встретить даже такое утверждение: “Внешне алгоритм представляет собой схему - набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации “. Здесь форма представления алгоритма смешивается с самим алгоритмом.

Принцип программирования “сверху вниз” требует, чтобы блок-схема поэтапно конкретизировалась и каждый блок “расписывался” до элементарных операций. Но такой подход можно осуществить при решении несложных задач. При решении сколько-нибудь серьезной задачи блок-схема “расползется” до такой степени, что ее невозможно будет охватить одним взглядом.

Блок-схемы алгоритмов удобно использовать для объяснения работы уже готового алгоритма, при этом в качестве блоков берутся действительно блоки алгоритма, работа которых не требует пояснений. Блок-схема алгоритма должна служить для упрощения изображения алгоритма, а не для усложнения.

При решении задач на компьютере необходимо не столько умение составлять алгоритмы, сколько знание методов решения задач (как и вообще в математике). Поэтому изучать нужно не программирование как таковое (и не алгоритмизацию), а методы решения математических задач на компьютере. Задачи следует классифицировать не по типам данных, как это обычно делается (задачи на массивы, на символьные переменные и т. д.), а по разделу “Требуется”.

В информатике процесс решения задачи распределяется между двумя субъектами: программистом и компьютером. Программист составляет алгоритм (программу), компьютер его исполняет. В традиционной математике такого разделения нет, задачу решает один человек, который составляет алгоритм решения задачи и сам выполняет его. Сущность алгоритмизации не в том, что решение задачи представляется в виде набора элементарных операций, а в том, что процесс решения задачи разбивается на два этапа: творческий (программирование) и не творческий (выполнение программы). И выполняют эти этапы разные субъекты - программист и исполнитель

В учебниках по информатике обычно пишут, что исполнителем алгоритма может быть и человек. На самом деле алгоритмы для людей никто не составляет (не будем забывать, что не всякий набор дискретных операций является алгоритмом). Человек в принципе не может действовать по алгоритму. Выполнение алгоритма - это автоматическое, бездумное выполнение операций. Человек всегда действует осмысленно. Для того чтобы человек мог выполнять какой-то набор операций, ему нужно объяснить, как это делается. Любую работу человек сможет выполнять только тогда, когда он понимает, как она выполняется.

Вот в этом - “объяснение и понимание” - и кроется различие между понятиями “алгоритм” и “способ”, “метод”, “правило”. Правила выполнения арифметических операций - это именно правила (или способы), а не алгоритмы. Конечно, эти правила можно изложить в виде алгоритмов, но толку от этого не будет. Для того чтобы человек смог считать по правилам арифметики, его нужно научить. А если есть процесс обучения, значит, мы имеем дело не с алгоритмом, а с методом.

При составлении алгоритма программист никому ничего не объясняет, а исполнитель не пытается ничего понять. Алгоритм размещается в памяти компьютера, который извлекает команды по одной и исполняет их. Человек действует по-другому. Чтобы решить задачу, человеку требуется держать в памяти метод решения задачи в целом, а воплощает этот метод каждый по-своему.

Очень ярко эта особенность человеческой психологии - неалгоритмичность мышления - проявилась в методическом пособии А. Г. Гейна и В. Ф. Шолоховича. В пособии излагаются решения задач из известного учебника. Решения задач должны быть представлены в виде алгоритмов. Однако авторы пособия понимают, что если просто написать алгоритм решения задачи, то разобраться в самом решении будет трудно. Поэтому они сначала приводят “нечеткое изложение алгоритма” (т. е. объясняют решение задачи), а затем пишут сам алгоритм.