Сайт о телевидении

Сайт о телевидении

» » Помехи в линиях связи. Помехи и искажения в канале связи

Помехи в линиях связи. Помехи и искажения в канале связи

Понятие помехи

Лекция 3. Дискретный канал с помехами

Цель лекции: ознакомление c понятием помех

а) понятие помех;

б) виды помех;

в) искажения;

г) борьба с помехами.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

По происхождению (месту возникновения);

По физическим свойствам;

По характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F - полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

Атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

Индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

Помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

Космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.


По физическим свойствам помех различают:

Флуктуационные помехи;

Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

Аддитивные помехи;

Мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ - ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами - основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

Уменьшение помех на путях проникновения в приемник;

Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Если линейные и нелинейные искажения обусловлены известными характеристиками канала, то они, по крайней мере в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отличать искажения от помех, имеющих случайный. характер. Помехи заранее не известны и поэтому не могут быть полностью устранены.

Под помехой понимается любое воздействие на полезный сигнал, затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными, являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических двигателей, медицинских установок, систем зажигания двигателей и т. п.

Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Они обусловлены нарушением регламента распределения рабочих частот, недостаточной стабильностью частот и плохой фильтрацией гармоник сигнала, а также

нелинейными процессами в каналах, ведущими к перекрестный искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульснцх помех часто связано с автоматической коммутацией и перекрестными наводкамн. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушения контактов в реле.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн, где другие помехи невелики. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

В общем виде влияние помехи на передаваемый сигнал можно выразить оператором

В частном случае, когда оператор вырождается в сумму

помеха называется аддитивной. Если же оператор может быть представлен в виде произведения

то помеху называют мультипликативной. Здесь - случайный процесс. В реальных каналах обычно имеют место и аддитивные и мультипликативные помехи, и поэтому

Среди аддитивных помех различного происхождения особое место занимает флуктуационная помеха (флуктуационный шум), представляющая собой случайный процесс с нормальным распределением (гауссовский процесс). Такая помеха наиболее изучена и представляет наибольший интерес как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах.

С физической точки зрения такие помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда

(электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи при прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Тепловой шум на входе приемника представляет собой нормальный случайный процесс с нулевым средним энергетическим спектром:

где постоянная Планка; постоянная Больцмана; абсолютная температура источника шума; текущая частота.

В диапазоне звуковых и радиочастот и поэтому спектральная плотность постоянна и равна

Величину называют односторонней спектральной плотностью шума. При ширине полосы пропускания приемника мощность шума равна

В диапазоне оптических частот, который с развитием квантовой электроники становится весьма перспективным для связи, наоборот, и тепловой игум оказывается очень слабым. Однако в этом диапазоне существенное значение получает «квантовый шум», вызванный дискретной природой излучения сигнала. Сущность квантового шума связана с соотношением неопределенности, согласно которому средние квадратичные ошнбин при измерении энергии фотона и временя его прихода подчиняются неравенству Поэтому даже при отсутствии аддитивных помех сигнал не может быть принят абсолютно точно. В первом приближении можно рассматривать квантовый шум как помеху со спектральной плотностью, равной энергии фотона . В оптическом диапазоне частота выше Гц, поэтому квантовый шум весьма ощутим.

К импульсным, или сосредоточенным по времени, помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в приемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются понятиями относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемщик с

широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания. Импульсные помехи представляют собой случайный процесс, состоящий из отдельных редких, случайно распределенных во времени и по амплитуде, импульсов. Статистические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

К сосредоточенным по спектру помехам принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленных, медицинских) и т. п. В общем случае это модулированные колебания, т. е. квазигармонические колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, ширина спектра сосредоточенной помехи в большинстве случаев не превышает полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим качество связи.

Под помехой будем понимать всякое случайное воздействие на сигнал в канале связи, препятствующее правильному приему сигналов. При этом следует подчеркнуть случайный характер воздействия, так как борьба с регулярными помехами не представляет затруднений (во всяком случае, теоретически). Так например, фон переменного тока или помеха от определенной радиостанции могут быть устранены компенсацией или фильтрацией. В каналах связи действуют как аддитивные помехи, т. е. случайные процессы, налагающиеся на передаваемые сигналы, так и мультипликативные помехи, выражающиеся в случайных изменениях характеристик канала.

На выходе непрерывного канала всегда действуют гауссовские помехи. К таким помехам, в частности, относится тепловой шум. Эти помехи неустранимы. Модель непрерывного канала, вклю­чающая в себя закон композиции сигнала s(t), четырёхполюсник с импульсной характеристикой g(t,) и источник аддитивных гауссовских помех (t).

Более полная модель должна учитывать другие типы аддитивных (аддитивные – суммарные) помех, нелинейные искажения сигнала, а также мультипликативные помехи.

Перейдем к краткой характеристике перечисленных выше помех.

Сосредоточенные по спектру, или гармонические, помехи представляют собой узкополосный модулированный сигнал. Причинами возникновения таких помех являются снижение переходного затухания между цепями кабеля, влияние радиостанций и т. п.

Импульсные помехи - это помехи, сосредоточенные по времени. Они представляют собой случайную последовательность импульсов, имеющих случайные амплитуды и следующих друг за другом через случайные интервалы времени, причем вызванные ими переходные процессы не перекрываются во времени. Причины появления этих помех: коммутационные шумы, наводки с высоковольтных линий, грозовые разряды и т. п. Нормирование импульсных помех в канале ТЧ производится путем ограничения времени превышения ими заданных порогов анализа.

Флуктуационная (случайная) помеха характеризуется широким спектром и максимальной энтропией, и поэтому с ней труднее всего бороться. Однако в проводных каналах связи уровень флуктуационных по­мех достаточно мал и они при малой удельной скорости передачи информации практически не влияют на коэффициент ошибок.

Мультипликативные (умножения на сигнал) помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала на выходе демодулятора. Различают плавные и скачкообразные изменения уровня. Плав­ные изменения происходят за время, которое намного больше, чем 0 – длительность единичного элемента; скачкообразные - за время, меньшее 0 . Причиной плавных изменений уровня могут быть колебания затухания линии связи, вызванные, например, изменением состояния погоды, а в радиоканалах - замирания. Причиной скачкообразных изменений уровня могут быть плохие контакты в аппаратуре, несовершенство эксплуатации аппаратуры связи, технологии измерений и др.

Снижение уровня более, чем 17,4 дБ ниже номинального, на­зывается перерывом. При перерыве уровень падает ниже порога чувствительности приемника и прием сигналов фактически прекращается. Перерывы длительностью меньше 300 мс принято называть кратковременными, больше 300 мс - длительными.

Импульсные помехи и перерывы являются основной причиной появления ошибок при передаче дискретных сообщений по про­водным каналам связи.

Аддитивные помехи содержат три составляющие: сосредоточенную по частоте (гармоническую), сосредоточенную во времени (импульсную) и флуктуационную. Помеха, сосредоточенная по частоте, имеет спектр значительно уже полосы пропускания канала. Импульсная помеха представляет собой последовательность кратковременных импульсов, разделенных интервалами, превышающими время переходных процессов в ка­нале. Флуктуационную помеху можно представить как последовательность непрерывно следующих один за другим импульсов, имеющую широкий спектр, выходящий за пределы полосы пропускания канала. Импульсную помеху можно рассматривать как крайний случай флуктуационной, когда её энергия сосредоточена в отдельных точках временной оси, а гармоническую помеху - как другой крайний случай, когда вся энергия сосредоточена в отдельных точках частотной оси.

Характеристиками аддитивных помех в каналах ТЧ являются псофометрическая мощность шума и уровень не взвешенного шума. Первая величина измеряется прибором с квадратичным детектором и специальным контуром, учитывающим чувствительность человеческого уха, микрофона и телефона к напряжениям различных частот. Средняя величина псофометрической мощности составляет 2*10 -15 Вт/м. Не взвешенный шум измеряют прибором с квадратичным детектором, имеющим время интегрирования 200 мс. Эта величина в точке с относительным нулевым уровнем не должна превышать -49 дБ на одном участке переприёма. Указанные характеристики не охватывают импульсные шумы, которые измеряют отдельно и специальными приборами. Мультипликативные помехи в каналах связи выражаются в основном в изменении остаточного затухания, приводящего к изменениям уровня сигнала. Изменения уровня сигнала в реальных каналах связи весьма разнообразны по своему характеру. Так, например, различают плавные и скачкообразные изменения уровня сигнала (иногда их называют изменениями остаточного затухания), кратковременные занижения уровня, кратковременные и длительные перерывы.

Плавными изменениями уровня называют такие, при которых отклонение уровня от своего номинального значения до максимального (минимального) происходит за время, несоизмеримо большее длительности единичных элементов передаваемого сигнала т 0 . К скачкообразным изменениям уровня относятся те, при которых изменение уровня от значения р Н0М до р МАКС происходит за время, соизмеримое с временем единичного интервала 0 .

Исследования показали, что за длительный промежуток времени отклонения уровня от номинального значения происходят как в сторону повышения, так и в сторону понижения, при этом оба направления изменения имеют примерно равную вероятность. Изменения такого рода могут быть отнесены к числу медленных изменений остаточного затухания. Наряду с ними имеют место быстрые, сравнительно кратковременные изменения остаточного затухания, в основном приводящие к уменьшению уровня приема. Значительные занижения уровня сигнала приводят к искажениям принимаемых сигналов и, как следствие, к ошибкам. Занижения уровня сигнала уменьшают его помехозащищенность, что также вызывает рост числа ошибок. И, наконец, в синхронных системах снижение уровня сигнала приводит к нарушению работы синхронизации и затрате определенного времени на вхождение, в режим синхронизации при восстановлении нормального уровня. Поэтому в современных системах ПДИ имеются специальные устройства, которые блокируют приемник и его систему синхронизации при уменьшении уровня сигнала ниже заданного значения - П. По этой причине занижение уровня на величину, большую или равную П, получило название перерыва. При передаче данных согласно рекомендациям ЕАСС перерывом считают П = 17,4 дБ. Перерывы делят на кратковременные и длительные

Для коммутируемых каналов ТЧ существует следующая нор­ма: t КР.ПЕР ЗОО мс. Это время выбрано из принятых в аппаратуре телефонной коммутации схемных решений, которые в случае перерыва длительностью более 300 мс обеспечивают разъединение ранее установленного соединения, т. е. приводят к отказу связи. Указанная величина рекомендуется МСЭ в качестве критерия отказа для передачи по коммутируемым каналам ТЧ. Рекомендуемая доля кратковременных перерывов на одном переприемном участке не должна превышать 1,5*10 -5 за 90% часовых отрезков времени.

Плавные изменения уровня до некоторой степени характеризуются величиной стабильности остаточного затухания. Согласно рекомендациям МСЭ остаточное затухание для двухпроводного канала ТЧ должно составлять 7,0, для четырёхпроводного - 17,4 дБ, а его нестабильность во времени на одном участке переприёма - не превышать 1,75 дБ.

В каналах связи возникают также своеобразные мультипликативные помехи, связанные с нестабильностью генераторов поднесущих частот аппаратуры передачи. В результате затрудняется выделение на приёме когерентного колебания при ФМ или возникают искажения сигнала ЧМ. По существующим нормам расхождение поднесущих частот на участке переприёма ограничивается величиной 1 Гц. Кроме того, наряду со скачкообразными изменениями уровня сигнала в каналах связи имеют место скачки фазы, однако последние пока не нормированы.

В процессе прохождения по реальным каналам связи сигналы подвергаются искажениям, поэтому получаемые сообщения воспроизводятся с некоторыми ошибками. Эти ошибки обусловлены характеристиками тракта передачи, а также помехами, воздействующими на сигнал. Изменение характеристик тракта, как правило, имеет регулярный характер, и поэтому их можно в большинстве случаев устранить посредством соответствующей коррекции. Помехи же, воздействующие на сигнал, имеют случайный характер, то есть они заранее неизвестны, и поэтому их влияние нельзя полностью устранить.

Помехой принято называть любое случайное воздействие на сигнал, которое снижает достоверность воспроизведения передаваемых сообщений. Существующие помехи весьма разнообразны по своей природе и физическому воздействию.

В радиоканалах различают:

· Атмосферные помехи, обусловлены грозовыми электрическими процессами. Наиболее вредное воздействие эти помехи оказывают в области длинных и средних волн. Первым обнаружили их негативное влияние изобретатель радио А. С. Попов;

· Индустриальные помехи, возникающие из-за резких изменений тока в цепях электроустройств. Это помехи это помехи от электротранспорта, систем зажигания двигателей, медицинских установок, электродвигателей;

· Помехи от посторонних радиостанций, возникающие вследствие плохой фильтрации гармоник сигнала, недостаточной стабильности частот, нарушения регламента рабочий частот, нелинейности каналов, что приводит к образованию новых колебаний;

· Космические помехи, обусловленные электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектов.

В каналах проводной связи основными видами помех являются импульсные шумы и прерывание связи. Импульсные шумы возникают при автоматической коммутации и вследствие перекрестных наводок. Прерывание связи называется явление, при котором сигнал либо резко затухает, либо совсем пропадает, например, из-за нарушения контактов при соединении.

Все казанные помехи относятся к внешним помехам, однако имеются и внутренние помехи, возникающие в аппаратуре, например в усилителях и преобразованиях частот. Внутренние помехи обусловлены, главным образом, наличием тепловых шумов - хаотического движения носителей заряда (электронов) в проводниках. Эти помехи принципиально неустранимы.

В общем случае влияние помех на полезный сигнал можно представить в виде оператора

В зависимости от характера взаимодействия с сигналом помехи подразделяются на аддитивные и мультипликативные.

Аддитивной называется помеха, которая при образовании выходного сигнала представляется в виде слагаемого:

Мультипликативной называется помеха, которая при образовании выходного сигнала представляется в виде множителя входного сигнала:

где K(t) - некоторый случайный процесс.

Примером мультипликативной помехи являются замирания, заключающиеся в случайном изменении уровню и соответственно мощности сигнала из-за непостоянства условий распространения радиоволн. В проводных каналах мультипликативной помехой может быть прерывание связи, при котором сигнал в линии резко затухает.

К аддитивным помехам можно отнести все рассмотренные виды внешних и внутренних помех.

В реальных каналах имеются и аддитивные, и мультипликативные помехи, поэтому в них

Схема действия помех в линии связи показана на рисунке 1.3.


Рис. 1.4

В заключение отметим, что между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют как единое целое, хотя и противоположные по своему действию. Например, излучение передатчика радиостанции, являясь полезным для приемника того абонента, которому оно предназначено, одновременно может служить помехой для приемников тех абонентов, которым оно не предназначено.

В реальном канале сигнал при передаче искажается, и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения ,вносимые самим кана­лом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала опреде­ляют так называемые линейные искажения . Кроме того, канал может вносить и нелинейные искажения , обусловленные нелинейностью тех или иных его звеньев. Как линейные, так и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отделять искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

Под помехами понимаются любые возмущения в канале передачи информации, вызывающие случайные отклонения принятого сообщения от переданного и затрудняющие его прием.

Откуда же берутся помехи и как они попадают в приемник? Приведем всем известный пример. В комнате прослушивается магнитофонная запись. Но слушатель воспринимает не только записанную музыку (полезное сообщение), но и разговоры сосе­дей, и шум транспорта с улицы, и звуки из соседней комнаты и т. д. Это все помехи. Точно так же и в любом канале электросвя­зи. Современный мир полон не только звуков, но и электромагнитных колебаний естественного и искусственного происхожде­ния. Они везде и всюду. Часть из них, конечно, теми или други­ми путями проникает на вход приемника, хотя мы и пытаемся этому препятствовать.

Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. Иногда помехи резко отличаются от сигнала, иногда даже трудно определить, где сигнал, а где помеха. Вдруг в телефоне слышно два разговора. Надо время, чтобы различить, где полезный сигнал, а где случайно подклю­чившаяся «помеха». В то же время эта «помеха» – полезный сиг­нал для другого абонента.

Классификацию помех можно провести по следующим приз­накам:



– по происхождению (месту возникновения);

– по физическим свойствам;

– по характеру воздействия на сигнал.

По происхождению в первую очередь надо отметить внутренние помехи, например, внутрен­ние шумы аппаратуры, входящей в канал связи, обусловленные хаотическим движением носителей заряда в усилительных прибо­рах, сопротивлениях и других элементах. Это так называемые тепловые шумы. Квадрат эффективного напряжения теплового шума на сопротивлении R определяется известной формулой Найквиста:

U 2 ш = 4×k ×T ×R ×F , (9.1)

где Т – абсолютная температура сопротивления R ;

F – полоса частот;

R =1,37*10 -23 В×с/град – постоянная Больцмана.

Как следует из (9.1), эти шумы принципиально устранимы только при абсолютном нуле (T = 0 К).

Среди внешних помех, то есть помех от посторонних источников, находящихся вне канала связи, можно назвать:

· атмосферные помехи (грозовые разряды, полярные сияния и др.), обусловленные электрическими процессами в атмосфере;

· индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, медицинские установки, системы зажигания двигателей и др.);

· помехи от посторонних станций и каналов, возникающие от различных нарушений режима их работы и свойств каналов;

· космические помехи, связанные с электромагнитными процес­сами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам различают флуктуационные и со­средоточенные помехи.

Флуктуационными называют помехи, обусловленные флукту­ациями тех или иных физических величин. Название происходит от физического понятия флуктуации (от лат. fluctuation – колеба­ние) – случайные отклонения физических величин от среднего значения.

Для такой помехи ха­рактерно очень малое число выбросов, превышающее средний уровень более чем в 3–4 раза. Но большие (в принципе, беско­нечные) выбросы всегда имеются. Спектр помехи весьма широ­кий. Флуктуационные помехи проникают в систему связи не толь­ко извне, они зарождаются также внутри самой системы в раз­личных ее звеньях.

Причинами внутренних флуктуационных помех являются в ос­новном тепловой шум в проводниках и дробовый эффект в элек­тронных приборах. К внешним флуктуационным помехам приня­то относить помехи космического происхождения, помехи, выз­ванные взаимными влияниями цепей в линиях связи (линейные и нелинейные переходы, попутный поток и некоторые другие). Хо­тя эти помехи по своему происхождению и не являются строго флуктуационными, но они обладают схожими признаками.

Мешающее воздействие флуктуационных помех зависит от ха­рактера передаваемого сообщения. В телефоне при речевом сиг­нале эта помеха прослушивается как звуковой шум, поэтому ча­сто флуктуационную помеху называют флуктуационным шумом. На экране телевизора флуктуационные помехи вызывают размы­тость контуров и понижение контраста изображения, при теле­графной передаче – ошибочное принятие знаков. Характерной особенностью флуктуационных помех является то, что явления, порождающие эти помехи, лежат в физической природе вещей (дискретное строение вещества, дискретная природа электромаг­нитного поля) и принципиально не могут быть устранены.

К сосредоточенным по времени (импульсным) помехам отно­сятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих один за другим через случайные достаточно большие промежутки времени.

Причина­ми импульсных помех являются: грозовые разряды; радиостан­ции, работающие в импульсном режиме; линии электропередачи и другие энергоустановки; система зажигания и энергообеспече­ния транспорта; перегрузки усилителей; плохие контакты в обо­рудовании и питании; недостатки разработки и изготовления оборудования; эксплуатационные работы (реконструкция, про­филактика, подключение к действующему каналу измерительных приборов, ошибочная коммутация и т. п.).

К сосредоточенным по спектру помехам относятся помехи по­сторонних радиостанций, генераторов высокой частоты различно­го назначения (медицинские, промышленные, бытовые и др.), пе­реходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с ши­риной спектра меньшей или соизмеримой с шириной спектра по­лезного сигнала. В диапазоне декаметровых волн, например, они являются основными видами помех.

По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи.

Аддитивной является помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействуют на прием­ное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Ме­шающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. Мультипликативные помехи непосредственно связаны с процес­сом прохождения сигнала в среде распространения и поэтому ощущаются только при наличии сигнала в системе связи. Про­стейший пример – телефонная или радиотрансляционная линия с плохими контактами. Другим примером мультипликативной по­мехи являются интерференционные замирания сигнала при при­еме на декаметровых волнах.

В реальных каналах электросвязи обычно имеет место не од­на, а совокупность помех. Но все же основными можно считать флуктуационные помехи, воздействующие на сигнал как адди­тивные.

Под искажениями понимают такие изменения формы сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигна­ла – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные, возника­ющие в линейных цепях; нелинейные, возникающие в нелиней­ных цепях. В общем случае искажения отрицательно сказывают­ся на качестве воспроизведения сообщений и не должны превы­шать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. А дальше измерение фор­мы сигнала можно скомпенсировать корректирующими цепями или просто учесть при дальнейшей обработке в приемнике. Это уже дело техники. Другое дело помехи – они заранее неизвестны и поэтому не могут быть устранены полностью.

Борьба с помехами – основная задача теории и техники свя­зи. Любые теоретические и технические решения о выполнении кодера и декодера, передатчика и приемника системы связи дол­жны приниматься с учетом того, что в линии связи имеются по­мехи.

При всем многообразии методов борьбы с помехами их мож­но свести к трем направлениям:

1. Подавление помех в месте их возникновения. Это достаточ­но эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источник помех, на которые воздействовать нельзя (грозовые разряды, шумы Солн­ца и др.).

2. Уменьшение помех на путях их проникновения в приемник. Следует отметить, что помехи обычно воздействуют на сигнал в среде распространения. Поэтому как проводные, так и радиоли­нии строятся так, чтобы обеспечить заданный уровень помех.

3. Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Это возможно за счет применения специальных методов преобразования сигнала на передающей стороне и анализа принимаемого сигнала. Для цифровых систем передачи основным способом ослабления воздействия помех является помехоустойчивое кодирование.