Сайт о телевидении

Сайт о телевидении

» » На рисунке изображены линии уровня функции. Геометрическое изображение функции двух переменных

На рисунке изображены линии уровня функции. Геометрическое изображение функции двух переменных

Функция нескольких переменных. Общие свойства. Непрерывность функции. Линии уровня, поверхности уровня.Семинар 21

Определение 1
Если каждой паре (x,y) значений двух независимых друг от друга переменных
величин x,y из некоторой области их изменения D соответствует
определенное значение величины z, то z есть функция двух независимых
переменных x,y, определенных в области D.
Обозначение: z=f(x,y), z=F(x,y), и так далее.
Способы задания функции: аналитический, табличный, графический.
Определение 2
Совокупность пар (x,y) значений x,y, при которых определена функция
z=f(x,y), называется областью определения или областью существования этой
функции.
Пусть дана функция z=f(x,y), определенная в некоторой области G плоскости
OXY. Рассмотрим некоторую определенную точку
, лежащую в
области G или на ее границе.
Определение 3
Число А называется пределом функции f(x,y) при стремлении точки M(x,y) к
точке
, если для каждого числа
найдется такое число r>0, что
для всех точек M(x,y), для которых выполняется неравенство
имеет
место неравенство

Определение 4
Пусть точка
принадлежит области определения функции f(x,y).
Функция z=f(x,y) называется непрерывной в точке
, если имеет место
равенство
(1)
Причем точка M(x,y) стремится к точке
произвольным образом,
оставаясь в области определения функции.
Функция, непрерывная в каждой точке некоторой области, называется
непрерывной в этой области.
Если в некоторой точке
не выполняется условие (1), то точка
называется точкой разрыва функции z=f(x,y). Условие (1) может не
выполняться, например, в следующих случаях:
1) z=f(x,y) определена во всех точках некоторой окрестности точки
,
за исключением самой точки
.
2) z=f(x,y) определена во всех точках окрестности точки
, но не
существует
3) z=f(x,y) определена во всех точках окрестности точки
и
существует
, но
Определение 5
Линией уровня функции z=f(x,y) называется линия z=f(x,y)=с на плоскости
OXY, в точках которой функция сохраняет постоянное значение z=c.

Определение 6
Поверхностью уровня функции u=f(x,y,z) называется поверхность u=f(x,y,z)=с
плоскости, в точках которой функция сохраняет постоянное значение u=c.
Примеры с решениями
1. Найти область определения функции
.
Решение.
Функция принимает действительные значения при условии
или
, т. е. областью определения данной функции является круг радиуса
а с центром в начале координат, включая граничную окружность.
2. Найти область определения функции
.
Решение.
Функция определена, если
Областью определения
функции является плоскости, заключенная между двумя параболами
, за исключением точки О(0,0).
3. Найти область определения функции
.
Решение.
Данная функция зависит от трех переменных и принимает действительные
значения при
, т. е. область определения –
часть пространства, заключенная внутри полостей двуполостного
гиперболоида.

4. Найти линии уровня функции
Решение.
Уравнение семейства линий уровня имеет вид
.
Придавая С различные действительные значения, получим концентрические
окружности с центром в начале координат.
5. Найти поверхности уровня функции
Решение.
Уравнение семейства поверхностей имеет вид
.
Если С=0, то получаем
- конус.
Если С>0, то получаем
- семейство однополостных
гиперболоидов;
Если С<0, то получаем
- семейство двуполостных гиперболоидов;
Примеры для самостоятельного решения
1. Найти области определения функции
2. Найти линии уровня функций:

КОНСПЕКТ ЛЕКЦИЙ ПО МАТАНАЛИЗУ

Функции нескольких переменных. Геометрическое изображение функции двух переменных. Линии и поверхности уровня. Предел и непрерывность функции нескольких переменных, их свойства. Частные производные, их свойства и геометрический смысл.

Определение 1.1. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z .

Определение 1.2. Множество М , в котором заданы переменные х,у, называется областью определения функции , а сами х,у – ее аргументами .

Обозначения: z = f (x , y ), z = z (x , y ).

Примеры.

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел
, являющихся аргументами функции нескольких переменных.

Определение 1.3. . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных
в множествеМ , если каждому набору чисел
из множестваМ по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z . Понятия аргументов и области определения вводятся так же, как для функции двух переменных.

Обозначения: z = f
,z = z
.

Геометрическое изображение функции двух переменных.

Рассмотрим функцию

z = f (x , y ) , (1.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x , y , z ) , где , является графиком функции двух переменных. Поскольку уравнение (1.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

z = f(x,y)

M y

Замечание . Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня.

Для функции двух переменных, заданной уравнением (1.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .

Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами
. Например, прис =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x , y , z ) уравнение u (x , y , z ) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями

3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных.

Введем понятие δ-окрестности точки М 0 (х 0 , у 0 ) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0 ) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами
, удовлетворяющими условию

где
- координаты точкиМ 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение 1.4. Число А называется пределом функции нескольких переменных f
в точкеМ 0 , если

такое, что | f (M ) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения:
.

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание . Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение 1.5. Функция f
называетсянепрерывной в точке М 0
, если
(1.2)

Если ввести обозначения

То условие (1.2) можно переписать в форме

(1.3)

Определение 1.6. Внутренняя точка М 0 области определения функции z = f (M ) называется точкой разрыва функции, если в этой точке не выполняются условия (1.2), (1.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .

Пусть Z = F (M ) – функция, определенная в некоторой окрестности точки М(у; х); L ={ Cos ; Cos } – единичный вектор (на рис. 33 1=, 2=); L – направленная прямая, проходящая через точку М ; М1(х1; у1), где х1=х+х и у1=у+у – точка на прямой L ; L – величина отрезка ММ1 ; Z = F (х+х, у+у)- F (X , Y ) – приращение функции F (M ) в точке М(х; у).

Определение. Предел отношения , если он существует, называется Производной функции Z = F ( M ) в точке M ( X ; Y ) по направлению вектора L .

Обозначение.

Если функция F (M ) дифференцируема в точке М(х; у) , то в точке М(х; у) существует производная по любому направлению L , исходящему из М ; вычисляется она по следующей формуле:

(8)

Где Cos И Cos - направляющие косинусы вектора L .

Пример 46. Вычислить производную функции Z = X 2 + Y 2 X в точке М(1; 2) по направлению вектора ММ1 , где М1 – точка с координатами (3; 0).

. Найдем единичный вектор L , имеющий данное направление:

Откуда Cos = ; Cos =- .

Вычислим частные производные функции в точке М(1; 2) :

По формуле (8) получим

Пример 47. Найти производную функции U = Xy 2 Z 3 в точке М(3; 2; 1) В направлении вектора MN , где N (5; 4; 2) .

. Найдем вектор и его направляющие косинусы:

Вычислим значения частных производных в точке М :

Следовательно,

Определение. Градиентом Функции Z = F (M ) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным и, взятым в точке М(х; у).

Обозначение.

Пример 48. Найти градиент функции Z = X 2 +2 Y 2 -5 в точке М(2; -1) .

Решение . Находим частные производные: и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Следовательно,

Аналогично определяется производная по направлению для функции трех переменных U = F (X , Y , Z ) , выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных : в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z = F (X , Y ) , имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F (X 0 , Y 0 ) . Рассмотрим график функции. Через точку (X 0 , Y 0 , F (X 0 , Y 0 )) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0) , рассматриваемый геометрически как вектор, приложенный в точке (X 0 , Y 0 , F (X 0 , Y 0 )) , будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2) Градиент функции F (X , Y ) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0 . Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0 . Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом . Координаты этого вектора равны:

Антиградиент функции F (X , Y ) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0 . Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X , Y ) из области определения функции F (X , Y ) , таких, что F (X , Y )= Const , где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Определение. Линией уровня функции U = F ( X , Y ) называется линия F (X , Y )=С на плоскости XOy , в точках которой функция сохраняет постоянное значение U = C .

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С , которое состоит из точек трехмерного пространства с координатами (X , Y , F (X , Y )= Const ), которые, с одной стороны, принадлежат графику функции Z = F (X , Y ), с другой - лежат в плоскости, параллельной координатной плоскости ХОУ , и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z = Const и линию пересечения спроектировать на плоскость ХОУ . Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ .

Определение. Множество линий уровня называют Картой линий уровня .

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением , или Направлением наискорейшего роста .

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Пример 50. Найти линии уровня функции U = X 2 + Y 2 .

Решение. Уравнение семейства линий уровня имеет вид X 2 + Y 2 = C (C >0) . Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро - и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F (X , Y )=10х1/3у2/3 , где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

5х + 10у = 30,

Т. е. определяют линию уровня функции:

G (X , Y ) = 5х + 10у.

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30 . Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Определение. Поверхностью уровня функции U = F ( X , Y , Z ) называется поверхность F (X , Y , Z )=С, в точках которой функция сохраняет постоянное значение U = C .

Пример 52. Найти поверхности уровня функции U = X 2 + Z 2 - Y 2 .

Решение. Уравнение семейства поверхностей уровня имеет вид X 2 + Z 2 - Y 2 . Если С=0 , то получаем X 2 + Z 2 - Y 2 =0 – конус; если C <0 , то X 2 + Z 2 - Y 2 =С – Семейство двуполостных гиперболоидов.

Если каждой точке X = (х 1 , х 2 , …х n) из множества {X} точек n–мерного пространства ставится в соответствие одно вполне определенное значение переменной величины z, то говорят, что задана функция n переменных z = f(х 1 , х 2 , …х n) = f (X).

При этом переменные х 1 , х 2 , …х n называют независимыми переменными или аргументами функции, z - зависимой переменной , а символ f обозначает закон соответствия . Множество {X} называют областью определения функции (это некое подмножество n-мерного пространства).

Например, функция z = 1/(х 1 х 2) представляет собой функцию двух переменных. Ее аргументы – переменные х 1 и х 2 , а z – зависимая переменная. Область определения – вся координатная плоскость, за исключением прямых х 1 = 0 и х 2 = 0, т.е. без осей абсцисс и ординат. Подставив в функцию любую точку из области определения, по закону соответствия получим определенное число. Например, взяв точку (2; 5), т.е. х 1 = 2, х 2 = 5, получим
z = 1/(2*5) = 0,1 (т.е. z(2; 5) = 0,1).

Функция вида z = а 1 х 1 + а 2 х 2 + … + а n х n + b, где а 1 , а 2 ,…, а n , b - по стоянные числа, называют линейной . Ее можно рассматривать как сумму n линейных функций от переменных х 1 , х 2 , …х n . Все остальные функции называют нелинейными .

Например, функция z = 1/(х 1 х 2) – нелинейная, а функция z =
= х 1 + 7х 2 - 5 – линейная.

Любой функции z = f (X) = f(х 1 , х 2 , …х n) можно поставить в соответствие n функций одной переменной, если зафиксировать значения всех переменных, кроме одной.

Например, функции трех переменных z = 1/(х 1 х 2 х 3) можно поставить в соответствие три функции одной переменной. Если зафиксировать х 2 = а и х 3 = b то функция примет вид z = 1/(аbх 1); если зафиксировать х 1 = а и х 3 = b, то она примет вид z = 1/(аbх 2); если зафиксировать х 1 = а и х 2 = b, то она примет вид z = 1/(аbх 3). В данном случае все три функции имеют одинаковый вид. Это не всегда так. Например, если для функции двух переменных зафиксировать х 2 = а, то она примет вид z = 5х 1 а, т.е. степенной функции, а если зафиксировать х 1 = а, то она примет вид , т.е. показательной функции.

Графиком функции двух переменных z = f(x, у) называется множество точек трёхмерного пространства (х, у, z), аппликата z которых связана с абсциссой х и ординатой у функциональным соотношением
z = f (x, у). Этот график представляет собой некоторую поверхность в трехмерном пространстве (например, как на рисунке 5.3).

Можно доказать, что если функция – линейная (т.е. z = ax + by + c), то ее график представляет собой плоскость в трехмерном пространстве. Другие примеры трехмерных графиков рекомендуется изучить самостоятельно по учебнику Кремера (стр. 405-406).

Если переменных больше двух (n переменных), то график функции представляет собой множество точек (n+1)-мерного пространства, для которых координата х n+1 вычисляется в соответствии с заданным функциональным законом. Такой график называют гиперповерхностью (для линейной функции – гиперплоскостью ), и он также представляет собой научную абстракцию (изобразить его невозможно).

Рисунок 5.3 – График функции двух переменных в трехмерном пространстве

Поверхностью уровня функции n переменных называется множество точек в n–мерном пространстве, таких, что во всех этих точках значение функции одно и то же и равно С. Само число С в этом случае называется уровнем .

Обычно для одной и той же функции можно построить бесконечно много поверхностей уровня (соответствующих различным уровням).

Для функции двух переменных поверхность уровня принимает вид линии уровня .

Например, рассмотрим z = 1/(х 1 х 2). Возьмем С = 10, т.е. 1/(х 1 х 2) = 10. Тогда х 2 = 1/(10х 1), т.е. на плоскости линия уровня примет вид, представленный на рисунке 5.4 сплошной линией. Взяв другой уровень, например, С = 5, получим линию уровня в виде графика функции х 2 = 1/(5х 1) (на рисунке 5.4 показана пунктиром).

Рисунок 5.4 - Линии уровня функции z = 1/(х 1 х 2)

Рассмотрим еще один пример. Пусть z = 2х 1 + х 2 . Возьмем С = 2, т.е. 2х 1 + х 2 = 2. Тогда х 2 = 2 - 2х 1 , т.е. на плоскости линия уровня примет вид прямой, представленный на рисунке 5.5 сплошной линией. Взяв другой уровень, например, С = 4, получим линию уровня в виде прямой х 2 = 4 - 2х 1 (на рисунке 5.5 показана пунктиром). Линия уровня для 2х 1 + х 2 = 3 показана на рисунке 5.5 точечной линией.

Легко убедиться, что для линейной функции двух переменных любая линия уровня будет представлять собой прямую на плоскости, причем все линии уровня будут параллельны между собой.

Рисунок 5.5 - Линии уровня функции z = 2х 1 + х 2

Определение функции нескольких переменных

Рассматривая функции одной переменной, мы указывали, что при изучении многих явления приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.

Пример 1. Площадь S прямоугольника со сторонами, длины которых равны х и у , выражается формулой S = ху . Каждой паре значений х и у соответствует определенное значение площади S ; S есть функция двух переменных.

Пример 2. Объем V прямоугольного параллелепипеда с ребрами, длины которых равны х , у , z , выражается формулой V = xyz . Здесь V есть функция трех переменных х , у , z .

Пример 3. Дальность R полета снаряды, выпущенного с начальной скоростью v 0 из орудия, ствол которого наклонен к горизонту под углом , выражается формулой
(если пренебречь сопротивлением воздуха). Здесьg – ускорение силы тяжести. Для каждой пары значений v 0 и  эта формула дает определенное значение R , т.е. R является функцией двух переменных v 0 и .

Пример 4.
. Здесьи есть функция четырех переменных х , у , z , t .

Определение 1. Если каждой паре (х , у ) значений двух независимых друг от друга переменных величин х и у из некоторой области их изменения D , соответствует определенное значение величины z , то мы говорим, что z есть функция двух независимых переменных х и у , определенная в области D .

Символически функция двух переменных обозначается так:

z = f (x , y ), z = F (x , y ) и т.д.

Функция двух переменных может быть задана, например, с помощью таблицы или аналитически – с помощью формулы, как это сделано в рассмотренных выше примерах. На основании формулы можно составить таблицу значений функции для некоторых пар значений независимых переменных. Так, для первого примера можно составить следующую таблицу:

S = ху

В этой таблице на пересечении строки и столбца, соответствующих определенным значениям х и у , проставлено соответствующее значение функции S . Если функциональная зависимость z = f (x , y ) получается в результате измерений величины z при экспериментальном изучении какого-либо явления, то сразу получается таблица, определяющая z как функцию двух переменных. В этом случае функция задается только таблицей.

Как и в случае одной независимой переменной, функция двух переменных существует, вообще говоря, не при любых значениях х и у .

Определение 2. Совокупность пар (х , у ) значений х и у , при которых определяется функция z = f (x , y ), называется областью определения или областью существования этой функции.

Область определения функции наглядно иллюстрируется геометрически. Если каждую пару значений х и у мы будем изображать точкой М (х , у ) в плоскости Оху , то область определения функции изобразится в виде некоторой совокупности точек на плоскости. Эту совокупность точек будем также называть областью определения функции. В частности, областью определения может быть и вся плоскость. В дальнейшем мы будем главным образом иметь дело с такими областями, которые представляют собой части плоскости , ограниченные линиями . Линию, ограничивающую данную область, будем называть границей области. Точки области, не лежащие на границе, будем называть внутренними точками области. Область, состоящая из одних внутренних точек, называется открытой или незамкнутой . Если же к области относятся и точки границы, то область называется замкнутой . Область называется ограниченной, если существует такая постоянная С , что расстояние любой точки М области от начала координат О меньше С , т.е. |OM | < С .

Пример 5. Определить естественную область определения функции

z = 2х у .

Аналитическое выражение 2х у имеет смысл при любых значениях х и у . Следовательно, естественной областью определения функции является вся плоскость Оху .

Пример 6.
.

Для того чтобы z имело действительное значение, нужно, чтобы под корнем стояло неотрицательное число, т.е. х и у должны удовлетворять неравенству 1 – х 2 – у 2  0, или х 2 + у 2  1.

Все точки М (х , у ), координаты которых удовлетворяют указанному неравенству, лежат в круге радиуса 1 с центром в начале координат и на границе этого круга.

Пример 7.
.

Так как логарифмы определены только для положительных чисел, то должно удовлетворяться неравенство х + у > 0, или у >  х .

Это значит, что областью определения функции z является половина плоскости, расположенная над прямой у =  х , не включая самой прямой.

Пример 8. Площадь треугольника S представляет собой функцию основания х и высоты у : S = xy /2.

Областью определения этой функции является область х  0, у  0 (так как основание треугольника и его высота не могут быть ни отрицательны, ни нулем). Заметим, что область определения рассматриваемой функции не совпадает с естественной областью определения того аналитического выражения, с помощью которого задается функция, так как естественной областью определения выражения ху/ 2 является, очевидно, вся плоскость Оху .

Определение функции двух переменных легко обобщить на случай трех или более переменных.

Определение 3. Если каждой рассматриваемой совокупности значений переменных х , у , z , …, u , t соответствует определенное значение переменной w , то будем называть w функцией независимых переменных х , у , z , …, u , t и писать w = F (х , у , z , …, u , t ) или w = f (х , у , z , …, u , t ) и т.п.

Так же как и для функции двух переменных, можно говорить об области определения функции трех, четырех и более переменных.

Так, например, для функции трех переменных областью определения является некоторая совокупность троек чисел (х , у , z ). Заметим тут же, что каждая тройка чисел задает некоторую точку М (х , у , z ) в пространстве Оху z . Следовательно, областью определения функции трех переменных является некоторая совокупность точек пространства.

Аналогично этому можно говорить об области определения функции четырех переменных u = f (x , y , z , t ) как о некоторой совокупности четверок чисел (x , y , z , t ). Однако область определения функции четырех или большего числа переменных уже не допускает простого геометрического истолкования.

В примере 2 приведена функция трех переменных, определенная при всех значениях х , у , z .

В примере 4 приведена функция четырех переменных.

Пример 9. .

Здесь w – функция четырех переменных х , у , z , и , определенная при значениях переменных, удовлетворяющих соотношению:

Понятие функции нескольких переменных

Введем понятие функции нескольких переменных.

Определение 1. Пусть каждой точке М из множества точек {М } евклидова пространства E m по какому-либо закону ста­вится в соответствие некоторое число и из числового множес­тва U. Тогда будем говорить, что на множестве {М } задана функция и = f(M). При этом множества {М } и U называют­ся соответственно областью определения (задания) и областью изменения функции f(M).

Как известно, функция одной переменной у = f (x ) изобра­жается на плоскости в виде линии. В случае двух переменных область определения {М п } функции z = f(x, y) представляет собой некоторое множество точек на координатной плоскости Оху (рис. 8.1). Координата z называется аппликатой, и тогда сама функция изображается в виде некоторой поверхности в пространстве E 3 . Аналогичным образом функция от т пере­менных

определенная на множестве {М } евклидова пространства Е m , представляет собой гиперповерхность в евклидовом простран­стве Е m+1 .

Некоторые виды функций нескольких переменных

Рассмотрим примеры функций нескольких переменных и найдем их области определения.

Е 3 . Областью определения этой функции является все множест­во точек плоскости Оху. Область значений этой функции - промежуток }