Сайт о телевидении

Сайт о телевидении

» » Что такое wavelet фильтр в камере телефона. К.А.Алексеев. Вейвлеты, аппроксимация и статистические приложения

Что такое wavelet фильтр в камере телефона. К.А.Алексеев. Вейвлеты, аппроксимация и статистические приложения

Появление недорогих цифровых фотоаппаратов привело к тому, что значительная часть жителей нашей планеты, вне зависимости от возраста и пола, приобрела привычку запечатлевать каждый свой шаг и выставлять полученные изображения на всеобщее обозрение в социальных сетях. Кроме того, если раньше семейный фотоархив помещался в одном альбоме, то сегодня он состоит из сотен снимков. Для того чтобы облегчить их хранение и передачу по сетям, требуется уменьшение веса цифрового изображения. С этой целью применяются методы, основанные на различных алгоритмах, включая вейвлет-преобразование. Что это такое, расскажет наша статья.

Что такое цифровое изображение

Визуальная информация в компьютере представляется в виде чисел. Говоря простым языком, фото, сделанное цифровым аппаратом, представляет собой таблицу, в ячейки которой вписаны значения цвета каждого из его пикселей. Если речь идет о монохромном изображении, то их заменяют значениями яркости из отрезка , где 0 используют для обозначения черного цвета, а 1 — белого. Остальные оттенки задаются дробными числами, но с ними неудобно работать, поэтому диапазон расширяют и значения выбирают из отрезка между 0 и 255. Почему именно из этого? Все просто! При таком выборе в двоичном представлении для кодирования яркости каждого пикселя требуется ровно 1 байт. Очевидно, что для хранения даже небольшого изображения требуется довольно много памяти. Например, фотография размером 256 х 256 пикселей займет 8 кБайт.

Несколько слов о методах сжатия изображений

Наверняка каждый видел снимки плохого качества, где присутствуют искажения в виде прямоугольников одного цвета, которые принято называть артефактами. Они возникают в результате так называемого сжатия с потерями. Оно позволяет значительно уменьшить вес изображения, однако неизбежно сказывается на его качестве.

К с потерями относятся:

  • JPEG. На данный момент это один из наиболее популярных алгоритмов. Он основан на применении дискретного косинусного преобразования. Справедливости ради нужно отметить, что существуют варианты JPEG, осуществляющие сжатие без потерь. К ним относятся Lossless JPEG и JPEG-LS.
  • JPEG 2000. Алгоритм используется на мобильных платформах и основан на применении дискретного вейвлет-преобразования.
  • Алгоритм фрактального сжатия. В некоторых случаях он позволяет получать изображения превосходного качества даже при сильном сжатии. Однако из-за проблем с патентованием этот метод продолжает оставаться экзотикой.

Без потерь сжатие осуществляют посредством алгоритмов:

  • RLE (используется в качестве основного метода в форматах TIFF, BMP, TGA).
  • LZW (применяется в формате GIF).
  • LZ-Huffman (используется для формата PNG).

Преобразование Фурье

Прежде чем перейти к рассмотрению вейвлетов, имеет смысл изучить связанную с ними функцию, описывающую коэффициенты при разложении исходной информации на элементарные составляющие, т. е. гармонические колебания с разными частотами. Иными словами, преобразование Фурье — уникальный инструмент, связывающий дискретные и непрерывные миры.

Оно выглядит так:

Формула обращения записывается следующим образом:

Что такое вейвлет

За этим названием скрывается математическая функция, которая позволяет проанализировать различные частотные компоненты исследуемых данных. Ее график представляет собой волнообразные колебания, амплитуда которых уменьшается до 0 вдали от начала координат. В общем случае интерес представляют вейвлет-коэффициенты, определяемые интегральным преобразованием сигнала.

Спектрограммы Wavelet отличаются от обычных спектров Фурье, так как связывают спектр различных особенностей сигналов с их временной компонентой.

Вейвлет-преобразование

Такой способ преобразования сигнала (функции) позволяет переводить его из временного в частотно-временное представление.

Для того чтобы вейвлет-преобразование было возможно, для соответствующей вейвлет-функции должны выполняться следующие условия:

  • Если для некой функции ψ (t) Фурье-преобразование имеет вид

то должно выполняться условие:

Кроме того:

  • вейвлет должен обладать конечной энергией;
  • он должен быть интегрируемым, непрерывным и иметь компактный носитель;
  • вейвлет должен быть локализованным как по частоте, так и во времени (в пространстве).

Виды

Непрерывное вейвлет-преобразование используется для соответствующих сигналов. Гораздо больший интерес представляет его дискретный аналог. Ведь он может использоваться для обработки информации в компьютерах. Однако при этом возникает проблема, связанная с тем, что формулы для дискретного ДВП нельзя получить путем простой дискретизацией соответствующих формул ДНП.

Решение данной задачи было найдено И. Добеши, который смог подобрать метод, позволяющий построить серию таких ортогональных вейвлетов, из которых каждый определяется конечным числом коэффициентов. Позже были созданы быстрые алгоритмы, например алгоритм Малла. При его применении для разложения или для восстановления требуется совершить порядка cN операций, где N - длина выборки, а с - число коэффициентов.

Вайвлет Хаара

Для того чтобы следует найти определенную закономерность среди его данных, а еще лучше, если это будут длинные цепочки нулей. Вот тут-то может пригодиться алгоритм вейвлет-преобразования. Однако продолжим рассмотрение метода по порядку.

Сначала нужно вспомнить, что у фотографий яркость соседних пикселей, как правило, отличается на небольшую величину. Если даже на реальных изображениях присутствуют участки с резкими, контрастными перепадами яркости, то они занимают только малую часть изображения. В качестве примера возьмем всем известное тестовое изображение Lenna в градациях серого. Если взять матрицу яркости его пикселей, то часть первой строки будет выглядеть как последовательность чисел 154, 155, 156, 157, 157, 157, 158, 156.

Для получения нулей к ней можно применить так называемый дельта-метод. Для этого сохраняют только первое число, а для остальных берут лишь отличия каждого числа от предыдущего со знаком «+» или «-».

В результате получится последовательность: 154,1,1,1,0,0,1,-2.

Недостатком дельта-кодирования является его нелокальность. Иными словами, невозможно брать только кусочек последовательности и выяснить, какие яркости в нем закодированы, если не декодированы все значения перед ним.

Для преодоления этого недостатка числа делят на пары и для каждой находят полусумму (об. a) и полуразность (об. d), т. е. для (154,155),(156,157),(157,157),(158,156) имеем (154.5,0.5),(156.5,0.5),(157,0.0),(157,-1.0). В таком случае в любой момент можно найти значение обоих чисел в паре.

В общем случае для дискретного вейвлет-преобразования сигнала S имеем:

Такой дискретный метод вытекает из непрерывного случая вейвлет-преобразования-Хаара и широко используется в разных областях обработки и сжатия информации.

Сжатие

Как уже было сказано, одной из сфер применения вейвлет-преобразования является алгоритм JPEG 2000. Сжатие с использованием метода Хаара основано на переводе вектора из двух пикселей X и Y в вектор (X + Y)/2 и (X - Y)/2. Для этого достаточно умножить исходный вектор на матрицу, представленную ниже.

Если точек больше, то берут матрицу побольше, по диагонали которой расположены матрицы H. Таким образом, исходный вектор независимо от своей длины обрабатывается парами.

Фильтры

Полученные «полусуммы» — это средние значения яркости в парах пикселей. То есть значения при конвертации в изображение должно дать его копию, уменьшенную в 2 раза. При этом полусуммы усредняют яркости, т. е. «отфильтровывают» случайные всплески их значений и играют роль частотных фильтров.

Теперь разберемся с тем, что показывают разности. Они «выделяют» межпиксельные «всплески», устраняя константную составляющую, т. е. «отфильтровывают» значения с низкими частотами.

Даже из приведенного выше хааровского вейвлет-преобразование для «чайников» становится очевидно, что оно представляет собой пару фильтров, которые разделяют сигнал на две составляющие: высокочастотную и низкочастотную. Для получения исходного сигнала достаточно просто вновь объединить эти составляющие.

Пример

Пусть мы хотим сжать фотопортрет (тестовое изображение Lenna). Рассмотрим пример вейвлет-преобразования его матрицы яркостей пикселов. Высокочастотная составляющая изображения отвечает за отображение мелких деталей и описывает шум. Что касается низкочастотной, то она несет в себе информацию о форме лица и плавных перепадах яркости.

Особенности человеческого восприятия фотографий таковы, что важнее последняя компонента. Это значит, что при сжатии определенная часть высокочастотных данных может быть отброшена. Тем более что она имеет меньшие значения и кодируется более компактно.

Для увеличения степени сжатия можно применить преобразование Хаара несколько раз к низкочастотным данным.

Применение к двумерным массивам

Как уже было сказано, цифровое изображение в компьютере представляют в виде матрицы значений интенсивностей его пикселей. Таким образом, нас должно интересовать хааровское двумерное вейвлет-преобразование. Для его осуществления необходимо просто выполнить одномерное его преобразование для каждой строки и каждого столбца матрицы интенсивностей пикселов изображения.

Значения, близкие к нулю, можно отбросить без существенного ущерба для декодированного рисунка. Такой процесс известен как квантование. И именно на этом этапе теряется часть информации. Кстати, число обнуляемых коэффициентов возможно изменять, тем самым регулируя степень сжатия.

Все описанные действия приводят к тому, что получается матрица, которая содержит большое количество 0. Ее следует записать построчно в текстовый файл и сжать любым архиватором.

Декодирование

Обратное преобразование в изображение производится по следующему алгоритму:

  • архив распаковывается;
  • применяется обратное преобразование Хаара;
  • декодированная матрица преобразуется в изображение.

Преимущества по сравнению с JPEG

При рассмотрении алгоритма Joint Photographic Experts Group было сказано, что он основан на ДКП. Такое преобразование осуществляется поблочно (8 х 8 пикселей). В результате, если сжатие сильное, то на восстановленном изображении становится заметной блочная структура. При сжатии с использованием вейвлетов такая проблема отсутствует. Однако могут появиться искажения другого типа, которые имеют вид ряби около резких границ. Считается, что подобные артефакты в среднем менее заметны, чем «квадратики», которые создаются при применении алгоритма JPEG.

Теперь вы знаете, что такое вейвлеты, какими они бывают и какое практическое применение для них нашлось в сфере обработки и сжатия цифровых изображений.

Вейвлеты (от англ. wavelet ), всплески - это математические функции, позволяющие анализировать различные частотные компоненты данных. Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают четкую привязку спектра различных особенностей сигналов ко времени.

Для обработки дискретных сигналов используется дискретное вейвлет-преобразование (ДВП, DWT).

Первое ДВП было предложно венгерским математиком Альфредом Хааром. Для входного сигнала, представленного массивом 2 n чисел, вейвлет преобразование Хаара просто группирует элементы по 2 и образует от них суммы и разности. Группировка сумм проводится рекурсивно для образования следующего уровня разложения. В итоге получается 2 n −1 разность и 1 общая сумма. Мы начнем с одномерного массива данных, состоящего из N элементов. В принципе, этими элементами могут быть соседние пикселы изображения или последовательные звуковые фрагменты. Примером будет служить массив чисел (2,9,12,10,9,8, 8,7). Сначала вычислим четыре средние величины (Рис. 40)

Ясно, что знания этих четырех полусумм не достаточно для восстановления всего массива, поэтому мы еще вычислим четыре полуразности

(2 - 9)/2 = - 4,5,

(12 - 10)/2 = 1,

(9 – 8)/2 = 0,5,

(8 – 7)/2 = 0,5,

которые будем называть коэффициентами деталей. Средние числа можно представлять себе крупномасштабным разрешением исходного образа, а детали необходимы для восстановления мелких подробностей или поправок. Если исходные данные коррелированы, то крупномасштабное разрешение повторит исходный образ, а детали будут малыми.

Массив, состоящий из четырех полусумм и четырех полуразностей, можно использовать для восстановления исходного массива чисел. Новый массив также состоит из восьми чисел, но его последние четыре компоненты, полуразности, имеют тенденцию уменьшаться, что хорошо для сжатия.

Повторим нашу процедуру применительно к четырем первым (крупным) компонентам нашего нового массива. Они преобразуются в два средних и в две полуразности. Остальные четыре компонента оставим без изменений. Следующая и последняя итерация нашего процесса преобразует первые две компоненты этого массива в одно среднее (которое, на самом деле, равно среднему значению всех 8 элементов исходного массива) и одну полуразность.

Рисунок 3.18. Илллюстрация работы одномерного вейвлет-преобразования.

В итоге получим массив чисел, который называется вейвлетным преобразованием Хаара исходного массива данных .

Одномерное вейвлетное преобразование Хаара легко переносится на двумерный случай. Стандартное разложение (рис. 3.19) начинается вычислением вейвлетных преобразований всех строк изображения. К каждой строке применяются все итерации процесса, до тех пора, пока самый левый элемент каждой строки не станет равен среднему значению чисел этой строки, а все остальные элементы будут равны взвешенным разностям. Получится образ, в первом столбце которого стоит среднее столбцов исходного образа. После этого стандартный алгоритм производит вейвлетное преобразование каждого столбца. В результате получится двумерный массив, в котором самый левый верхний угловой элемент равен среднему всего исходного массива. Остальные элементы верхней строки будут равны средним взвешенным разностям, ниже стоят разности средних, а все остальные пикселы преобразуются в соответствующие разности.

Пирамидальное разложение вычисляет вейвлетное преобразование, применяя итерации поочередно к строкам и столбцам. На первом шаге вычисляются полусуммы и полуразности для всех строк (только одна итерация, а не все вейвлетное преобразование). Это действие производит средние в левой половине матрицы и полуразности - в правой половине. На втором шаге вычисляются полусуммы и полуразности для всех столбцов получившейся матрицы.

Рисунок 3.19. Стандартное двумерное вейвлет-преобразование

Рисунок 3.20. Пирамидальное двумерное вейвлет-преобразование

Результатом двумерного вейвлет-преобразования является набор матриц, соответствующих различным спектральным составляющим исходного изображения. При этом в левом верхнем углу находится низкочастотная компонента LL4 (рис. 3.21), которая создавалась только на основе полусумм и является уменьшенной копией исходного изображения.

Рисунок 3.21. Составляющие двумерного вейвлет-преобразования

Остальные компоненты преобразования можно использовать для восстановления исходного изображения. При этом, высокочастотные компоненты хорошо поддаются сжатию с использованием алгоритмов RLE и Хаффмана. Следует также отметить, что при сжатии с потерей информации возможно также использовать квантование, а также прямое отбрасывание части компонент. Результатом таких операций является хорошая степень сжатия. На рис. 3.22 приведен пример кодирования изображения, использующего вейвлет-преобразование.

Следует отметить, что двумерное вейвлет-преобразование требует значительных вычислительных ресурсов при реализации обычными программными методами. Однако, алгоритм вейвлет-преобразования состоит из большого количества простых преобразований, которые хорошо поддаются распараллеливанию. В результате, это преобразование хорошо выполняется аппаратно при использовании специализированной элементной базы.

Рисунок 3.22 . Пример вейвлет-преобразования изображения.

Вейвлет-преобразование используется в стандарте сжатия изображений JPEG2000, а также предусмотрено в качестве инструмента в формате MPEG-4.

12.3 Алгоритм дискретного вейвлет-преобразования

С целью построения алгоритма дискретного вейвлет-преобразования введем некоторые линейные преобразования. Прежде всего, обозначим для всех сумму чисел по модулю s следующим образом: , а также положим, что есть некоторый вектор, в котором s четно. Тогда вводимые преобразования положим имеющим вид:

,

для всех . Очевидно, данные выражения являют собой аналоги высокочастотного и низкочастотного фильтров (12.1), (12.2) с учетом периодического дополнения данных при помощи суммирования по модулю. Ясно, что преобразования , осуществляют разделение исходного вектора длиной s на два вектора половинной длины.

Итак, алгоритм вейвлет-преобразования сводится к реализации итеративной процедуры - и -преобразований, применяемых к вектору . Результатом таких преобразований служат векторы , коэффициентов аппроксимации и детализации.

Иначе говоря, рекурсивно данный алгоритм выглядит следующим образом:

, (12.12)
. (12.13)

Отметим, введенные обозначения для коэффициентов разложения являются весьма схожими с обозначениями коэффициентов , тогда как рекурсии (12.12), (12.13) - с каскадным алгоритмом. Дело в том, что построение алгоритма дискретного преобразования полностью основывается на теории дискретного преобразования в базисе вейвлет-функций (см. предыдущий параграф). Основным отличием здесь является то обстоятельство, что в статистических приложениях коэффициенты лишь приближенно соответствуют коэффициентам разложения .

Отметим, рекурсии (12.12), (12.13) могут см успехом применяться к расчету коэффициентов аппроксимации и детализации также для случаев : дело в том, что дополненные последовательности являются периодическими, причем

,

.

Алгоритм обратного дискетного преобразования сводится к реализации выражения (12.11) также при условии периодизации данных. Алгоритм начинается с восстановления векторов

,

и продолжается до восстановления вектора , пока не станет . Рекурсивное выражение для восстановления данных в этом случае имеет вид:

12.4 Статистический дискретный вейвлет-анализ

Разбиение данных

Итак, расчет вейвлет-оценок основывается на дискретном вейвлет-преобразовании, описанном выше. Как было показано, такой анализ подразумевает работу с данными, длина которых равна , где К - некоторое целое. Однако на практике длина исследуемых данных весьма часто оказывается не равной степени числа 2, в связи с чем возникает необходимость натяжения таких данных на эквидистантную сетку с числом узлов . Сказанное при этом является справедливым как для задач оценивания плотности распределения, так и для задач регрессионного сглаживания данных.

Процедуры деления данных на интервалы для оценивания плотности и регрессионного анализа введены в параграфах 10.2, 10.8 соответственно. В данном месте обсуждается эффект, вносимый подобным разбиением на качество синтезируемых оценок. Примеры, используемые для обсуждения эффекта, взяты из гл. 10, рис. 10.1 - 10.11.

Для взятых в качестве примера данных длиной исследован эффект деления на интервалы, состоящие из точек. Интегральные среднеквадратичные ошибки построения оценок приведены в таблице 12.1.

Таблица 12.1

Интегральные среднеквадратические ошибки

для интервалов разбиения различной длины

m

S8 жесткий

S8 мягкий

H жесткий

H мягкий

Как видно из таблицы, интегральная СКО достигает своего минимума при . График данной ошибки показан на рис. 12.1.

Несмотря на тот факт, что для подобных оценок можно определить оптимальный размер интервала, следует быть весьма осторожным в его статистической интерпретации. Дело в том, что разбиение данных на интервалы есть своего рода предварительное сглаживание, которое в теории достаточно часто в расчет не принимается. Очевидно, с ростом числа интервалов разбиения теряется большая часть вычислительной эффективности быстрого алгоритма. Точки, показывающие значения СКО на рис. 12.1 представляют собой компромисс между скоростью вычисления оценки и качеством предварительного сглаживания.

Приближенное построение вейвлет-оценок

Алгоритм реализации дискретного вейвлет-преобразования для целей построения статистических оценок (12.6) - (12.8) выглядит следующим образом:

Интегральная СКО, построенная для симмлета S8

Сделаем в данном месте несколько замечаний по поводу приведенного алгоритма. Во-первых, определение дискретного преобразования подразумевает использование данных, периодически дополняемых на каждом шаге алгоритма. Иначе говоря, данные представляют собой результат диадического суммирования, в котором исходные данные дополняются периодически на Z таким образом, что для .

Во-вторых, как было подчеркнуто ранее, верхний уровень разложения в приводимом алгоритме не участвует: на практике полагается , причем процедуры пороговой обработки применяют к коэффициентам разложения всех уровней за исключением уровня K , содержащего лишь коэффициенты аппроксимации. Однако если предполагается исключение коэффициентов разложения уровней, старших , как это сделано в примере с линейной вейвлет-оценкой, определение (12.6) дополняется условием:

.

Подобно (12.3) действия 1 - 3 алгоритма могут быть представлены в матричной форме. С этой целью вектор исследуемых данных обозначим через . Тогда прямое преобразование примет вид:

, (12.17)

в котором представляет собой оператор размерностью . Легко показать, что данный оператор является ортогональным, поскольку содержит произведения конечного числа ортогональных матриц-операторов, соответствующих различным шагам алгоритма Малла .

Пусть оператор обозначает процедуру трешолдинга вектора :

тогда как оператор обратного преобразования - , или в силу ортогональности . Следовательно, результат последовательного приложения действий 1 - 3, выражаемый вектором , может быть получен следующим образом:

В том случае, если решаемой задачей является построение линейной вейвлет-оценки и в качестве уровня принимается уровень , трешолдинг сводится к преобразованию идентичности, обеспечивающему в итоге . Дело в том, что сохранение коэффициентов разложения на каждом из уровней в данном случае позволяет итоговой оценке лишь повторить исходные данные.

Далее, алгоритм, представленный действиями 1 - 3, является общим правилом построения вейвлет-оценок. Отметим, данный алгоритм является более быстрым по сравнению с БПФ, поскольку требует выполнения лишь операций. Вообще говоря, алгоритм позволяет скорее строить аппроксимацию данных, нежели их оценку. Исключением здесь является разложение данных в базис Хаара. К сожалению, данный факт не обсуждается в литературе.

Остановимся на данном вопросе несколько подробнее. Рассмотрим с этой целью линейную оценку, положив для любых и k . Предположим также, что исходные данные удовлетворяют требованию:

. (12.18)

Известно, что рекурсии (12.9), (12.10) позволяют рассчитать оценки коэффициентов , тогда как выражения рекурсии (12.12), (12.13) - примерно те же коэффициенты в предположении, что исходные данные для рекурсии абсолютно те же. Однако в том случае, если требование (12.18) выполняется, исходные данные для (12.12), (12.13) в действии 3 алгоритма становятся отличными от аналогичных им данных обратной рекурсии (12.9), (12.10) на некоторый множитель . Следовательно, линейность алгоритма влечет за собой необходимость введения в прямое преобразование поправку:

,

.

Более того, поправке подвергается основное выражение для прямого преобразования:

, (12.19)

причем оператор приобретает вид:

Объединяя выражения (12.17) и (12.19), можно записать, что теперь

Вейвлет-преобразование - преобразование, похожее на преобразование Фурье (или гораздо больше на оконное преобразование Фурье) с совершенно иной оценочной функцией. Основное различие лежит в следующем: преобразование Фурье раскладывает сигнал на составляющие в виде синусов и косинусов, т.е. функций, локализованных в Фурье-пространстве; напротив, вейвлет-преобразование использует функции, локализованные как в реальном, так и в в Фурье-пространстве. В общем, вейвлет-преобразование может быть выражено следующим уравнением:

где * - символ комплексной сопряженности и функция ψ - некоторая функция. Функция может быть выбрана произвольным образом, но она должна удовлетворять определённым правилам.

Как видно, вейвлет-преобразование на самом деле является бесконечным множеством различных преобразований в зависимости от оценочной функции, использованной для его расчёта. Это является основной причиной, почему термин «вейвлет-преобразование » используется в весьма различных ситуациях и для различных применений. Также существует множество типов классификации вариантов вейвлет-преобразования. Здесь мы покажем только деление, основанное на ортогональности вейвлетов. Можно использовать ортогональные вейвлеты для дискретного вейвлет-преобразования и неортогональные вейвлеты для непрерывного. Эти два вида преобразования обладают следующими свойствами:

  1. Дискретное вейвлет-преобразование возвращает вектор данных той же длины, что и входной. Обычно, даже в этом векторе многие данные почти равны нулю. Это соответствует факту, что он раскладывается на набор вейвлетов (функций), которые ортогональны к их параллельному переносу и масштабированию. Следовательно, мы раскладываем подобный сигнал на то же самое или меньшее число коэффициентов вейвлет-спектра, что и количество точек данных сигнала. Подобный вейвлет-спектр весьма хорош для обработки и сжатия сигналов, например, поскольку мы не получаем здесь избыточной информации.
  2. Непрерывное вейвлет-преобразование, напротив, возвращает массив на одно измерение больше входных данных. Для одномерных данных мы получаем изображение плоскости время-частота. Можно легко проследить изменение частот сигнала в течение его длительности и сравнивать этот спектр со спектрами других сигналов. Поскольку здесь используется неортогональный набор вейвлетов, данные высоко коррелированы и обладают большой избыточностью. Это помогает видеть результат в более близком человеческому восприятию виде.

Дополнительные подробности о вейвлет-преобразовании доступны на тысячах интернет-ресурсов о вейвлетах в сети, или, например, здесь .

В библиотеке обработки данных Gwyddion реализованы оба этих преобразования и использующие вейвлет-преобразование модули доступны в меню Обработка данных Интегральные преобразования .

Дискретное вейвлет-преобразование

Дискретное вейвлет-преобразование (DWT) - реализация вейвлет-преобразования с использованием дискретного набора масштабов и переносов вейвлета, подчиняющихся некоторым определённым правилам. Другими словами, это преобразование раскладывает сигнал на взаимно ортогональный набор вейвлетов, что является основным отличием от непрерывного вейвлет-преобразования (CWT), или его реализации для дискретных временных рядов, иногда называемой непрерывным вейвлет-преобразованием дискретного времени (DT-CWT).

Вейвлет может быть сконструирован из функции масштаба, которая описывает свойства его масштабируемости. Ограничение состоит в том, что функция масштаба должна быть ортогональна к своим дискретным преобразованиям, что подразумевает некоторые математические ограничения на них, которые везде упоминаются, т.е. уравнение гомотетии

где S - фактор масштаба (обычно выбирается как 2). Более того, площадь под функцией должна быть нормализована и функция масштабирования должна быть ортогональна к своим численным переносам, т.е.

После введения некоторых дополнительных условий (поскольку вышеупомянутые ограничения не приводят к единственному решению) мы можем получить результат всех этих уравнений, т.е. конечный набор коэффициентов a k которые определяют функцию масштабирования, а также вейвлет. Вейвлет получается из масштабирующей функции как N где N - чётное целое. Набор вейвлетов затем формирует ортонормированный базис, который мы используем для разложения сигнала. Следует отметить, что обычно только несколько коэффициентов a k будут ненулевыми, что упрощает расчёты.

На следующем рисунке показаны некоторые масштабирующие функции и вейвлеты. Наиболее известным семейством ортонормированных вейвлетов явлется семейство Добеши. Её вейвлеты обычно обозначаются числом ненулевых коэффициентов a k , таким образом, мы обычно говорим о вейвлетах Добеши 4, Добеши 6, и т.п. Грубо говоря, с увеличением числа коэффициентов вейвлета функции становятся более гладкими. Это явно видно при сравнении вейвлетов Добеши 4 и 20, представленных ниже. Другой из упомянутых вейвлетов - простейший вейвлет Хаара, который использует прямоугольный импульс как масштабирующую функцию.

Функция масштабирования Хаара и вейвлет (слева) и их частотные составляющие (справа).

Функция масштабирования Добеши 4 и вейвлет (слева) и их частотные составляющие (справа).

Функция масштабирования Добеши 20 и вейвлет (слева) и их частотные составляющие (справа).

Существует несколько видов реализации алгоритма дискретного вейвлет-преобразования. Самый старый и наиболее известный – алгоритм Малла (пирамидальный). В этом алгоритме два фильтра – сглаживающий и несглаживающий составляются из коэффициентов вейвлета и эти фильтры рекуррентно применяются для получения данных для всех доступных масштабов. Если используется полный набор данных D = 2 N и длина сигнала равна L , сначала рассчитываются данные D /2 для масштаба L /2 N - 1 , затем данные (D /2)/2 для масштаба L /2 N - 2 , … пока в конце не получится 2 элемента данных для масштаба L /2 . Результатом работы этого алгоритма будет массив той же длины, что и входной, где данные обычно сортируются от наиболее крупных масштабов к наиболее мелким.

В Gwyddion для расчёта дискретного вейвлет-преобразования используется пирамидальный алгоритм. Дискретное вейвлет-преобразование в двумерном пространстве доступно в модуле DWT.

Дискретное вейвлет-преобразование может использоваться для простого и быстрого удаления шума с зашумлённого сигнала. Если мы возьмём только ограниченное число наиболее высоких коэффициентов спектра дискретного вейвлет-преобразования, и проведём обратное вейвлет-преобразование (с тем же базисом) мы можем получить сигнал более или менее очищенный от шума. Есть несколько способов как выбрать коэффициенты, которые нужно сохранить. В Gwyddion реализованы универсальный порог, адаптивный по масштабу порог и адаптивный по масштабу и пространству порог . Для определения порога в этих методах мы сперва определяем оценку дисперсии шума, заданную

где Y ij соответствует всем коэффициентам наиболее высокого поддиапазона масштаба разложения (где, как предполагается, должна присутствовать большая часть шума). Или же дисперсия шума может быть получена независимым путём, например, как дисперсия сигнала АСМ, когда сканирование не идёт. Для наиболее высокого поддиапазона частот (универсальный порог) или для каждого поддиапазона (для адаптивного по масштабу порога) или для окружения каждого пикселя в поддиапазоне (для адаптивного по масштабу и пространству порога) дисперсия рассчитывается как

Значение порога считается в конечном виде как

Когда порог для заданного масштаба известен, мы можем удалить все коэффициенты меньше значения порога (жесткий порог) или мы можем уменьшит абсолютное значение этих коэффициентов на значение порога (мягкий порог).

Удаление шума DWT доступно в меню Обработка данных Интегральные преобразования → Удаление шума DWT .

Непрерывное вейвлет-преобразование

Непрерывное вейвлет-преобразование (CWT) - реализация вейвлет-преобразования с использованием произвольных масштабов и практически произвольных вейвлетов. Используемые вейвлеты не ортогональны и данные, полученные в ходе этого преобразования высоко коррелированы. Для дискретных временных последовательностей также можно использовать это преобразование, с ограничением что наименьшие переносы вейвлета должны быть равны дискретизации данных. Это иногда называется непрерывным вейвлет-преобразованием дискретного времени (DT-CWT) и это наиболее часто используемый метод расчёта CWT в реальных применениях.

В принципеЮ непрерывное вейвлет-преобразование работает используя напрямую определение вейвлет-преобразования, т.е. мы рассчитываем свёртку сигнала с масштабированным вейвлетом. Для каждого масштаба мы получаем этим способом набор той же длины N , что и входной сигнал. Используя M произвольно выбранных масштабов мы получаем поле N×M , которое напрямую представляет плоскость время-частота. Алгоритм, используемый для этого расчёта может быть основан на прямой свёртке или на свёртке посредством умножения в Фурье-пространстве (это иногда называется быстрым вейвлет-преобразованием).

Выбор вейвлета для использования в разложении на время-частоту является наиболее важной вещью. Этим выбором мы можем влиять на разрешение результата по времени и по частоте.Нельзя изменить этим путём основные характеристики вейвлет-преобразования (низкие частоты имеют хорошее разрешение по частотам и плохое по времени; высокие имеют плохое разрешение по частотам и хорошее по времени), но можно несколько увеличить общее разрешение по частотам или по времени. Это напрямую пропорционально ширине используемого вейвлета в реальном и Фурье-пространстве. Если, например, использовать вейвлет Морле (реальная часть – затухающая функция косинуса), то можно ожидать высокого разрешения по частотам, поскольку такой вейвлет очень хорошо локализован по частоте. наоборот, используя вейвлет Производная Гауссиана (DOG) мы получим хорошую локализацию по времени, но плохую по частоте.

Непрерывное вейвлет-преобразование реализовано в модуле CWT, который доступен в меню Обработка данных Интегральные преобразования → CWT .

Источники

A. Bultheel: Bull. Belg. Math. Soc.: (1995) 2

S. G. Chang, B. Yu, M. Vetterli: IEEE Trans. Image Processing, (2000) 9 p. 1532

S. G. Chang, B. Yu, M. Vetterli: IEEE Trans. Image Processing, (2000) 9 p. 1522

На практике DTWS должно применяться к сигналам конечной длины. Таким образом, его необходимо модифицировать, чтобы из сигнала какой-то длины получать последовательность коэффициентов той же длины. Получившееся преобразование называется дискретное вейвлет-преобразование (DWT).

Вначале опишем DWT в матричном виде, а затем – на основе банков фильтров, что наиболее часто используется при обработке сигналов.

В обоих случаях мы предполагаем, что базисные функции и
компактно определены. Это автоматически гарантирует финитность последовательностейи. Далее предположим, что сигнал, подвергаемый преобразованию, имеет длину
.

      1. Матричное описание dwt

Обозначим через вектор последовательность конечной длиныдля некоторого. Этот вектор преобразуется в вектор
, содержащий последовательности
и
, каждая из которых половинной длины. Преобразование может быть записано в виде матричного умножения
, где матрица
- квадратная и состоит из нулей и элементов, умноженных на
. В силу свойств, полученных в разделе 2.3, матрица
является ортонормированной, и обратная ей матрица равна транспонированной. В качестве иллюстрации рассмотрим следующий пример. Возьмем фильтр длиной
, последовательность длиной
, а в качестве начального значения -
. Последовательностьполучим изпо формуле (2.35), где
. Тогда операция матрично-векторного умножения будет представлена в виде

. (2.52)

Обратное преобразование есть умножение
на обратную матрицу
:

. (2.53)

Таким образом, выражение (2.51) - это один шаг DWT. Полное DWT заключается в итеративном умножении верхней половины вектора
на квадратную матрицу
, размер которой
. Эта процедура может повторятьсяd раз, пока длина вектора не станет равна 1.

В четвертой и восьмой строках матрицы (2.51) последовательность циркулярно сдвинута: коэффициенты, выходящие за пределы матрицы справа, помещены в ту же строку слева. Это означает, чтоDWT есть точно один период длины N DTWS сигнала , получаемого путем бесконечного периодического продолжения. Так чтоDWT, будучи определенным таким образом, использует периодичность сигнала, как и в случае с DFT.

Матричное описание DWT кратко и ясно. Однако при обработке сигналов DWT чаще всего описывается посредством блок-диаграммы, аналогичной диаграмме системы анализа-синтеза (см. рис.1.1).

      1. Описание dwt посредством блоков фильтров

Рассматривая в главе 1 субполосные преобразования, мы интерпретировали равенства, аналогичные (2.45) и (2.46), как фильтрацию с последующим прореживанием в два раза. Так как в данном случае имеется два фильтра и, то банк фильтров – двухполосный и может быть изображен, как показано на рис.2.5.

Фильтры F и E означают фильтрацию фильтрами и
, соответственно. В нижней ветви схемы выполняется низкочастотная фильтрация. В результате получается некоторая аппроксимация сигнала, лишенная деталей низкочастотная (НЧ) субполоса. В верхней части схемы выделяется высокочастотная (ВЧ) субполоса. Отметим, что при обработке сигналов константа
всегда выносится из банка фильтров и сигнал домножается на 2 (см. рис.3.2, глава 3).

Итак, схема рис.2.5 делит сигнал уровня
на два сигнала уровня
. Далее, вейвлет-преобразование получается путем рекурсивного применения данной схемы к НЧ части. При осуществлении вейвлет-преобразования изображения каждая итерация алгоритма выполняется вначале к строкам, затем – к столбцам изображения (строится так называемая пирамида Маллата). В видеокодеках ADV6xx применена модифицированная пирамида Маллата, когда на каждой итерации не обязательно выполняется преобразование и по строкам, и по столбцам. Это сделано для более полного учета зрительного восприятия человека.

Получившееся преобразование аналогично (2.51). Однако существуют некоторые различия. При фильтрации сигнала конечной длины мы сталкиваемся с проблемой его продолжения на границе. Матричное выполнение DWT эквивалентно периодическому продолжению сигнала на границе. Этот тип продолжения является обязательным для ортогональных фильтров. В случае применения биортогональных фильтров появляются некоторые другие возможности в силу симметричности их характеристик. Подробнее этот вопрос будет рассматриваться в главе 3.

Схему, выполняющую DWT, можно представить еще и как показано на рис.2.6. Здесь рекурсивная фильтрация и прореживание заменены одной операцией фильтрации и одной операцией прореживания на каждую субполосу. Определение итерационных фильтров илегче всего дать в частотной области.