Сайт о телевидении

Сайт о телевидении

» » Архитектуры процессора intel за все время. Общее описание и принцип действия. Что такое центральный процессор

Архитектуры процессора intel за все время. Общее описание и принцип действия. Что такое центральный процессор

Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

Кэш-память - это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память. Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти - скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.

Как уже упоминалось выше, главное назначение кэш-памяти - это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах, он дает значительный прирост производительности в любых приложениях.

Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь, увеличивает скорость доступа к ним.

Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

Современные процессоры, оснащены кэшем, который состоит, зачастую из 2 -ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

1. Кэш первого уровня (L1) - наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

2. Кэш второго уровня (L2) - второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

3. Кэш третьего уровня (L3) - третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

Рассмотрим CISK и RISK архитектуру.

CISC -- концепция проектирования процессоров, которая характеризуется следующим набором свойств:

Нефиксированное значение длины команды;

Арифметические действия кодируются в одной команде;

Небольшое число регистров, каждый из которых выполняет строго определённую функцию.

Типичными представителями являются процессоры на основе команд x86 (исключая современные Intel Pentium 4, Pentium D, Core, AMD Athlon, Phenom, которые являются гибридными) и процессоры Motorola MC680x0.

Наиболее распространённая архитектура современных настольных, серверных и мобильных процессоров построена по архитектуре Intel x86 (или х86-64 в случае 64-разрядных процессоров). Формально, все х86-процессоры являлись CISC-процессорами, однако новые процессоры, начиная с Intel Pentium Pro, являются CISC-процессорами с RISC-ядром. Они непосредственно перед исполнением преобразуют CISC-инструкции процессоров x86 в более простой набор внутренних инструкций RISC.

В микропроцессор встраивается аппаратный транслятор, превращающий команды x86 в команды внутреннего RISC-процессора. При этом одна команда x86 может порождать несколько RISC-команд (в случае процессоров типа P6 -- до четырёх RISC-команд в большинстве случаев). Исполнение команд происходит на суперскалярном конвейере одновременно по несколько штук.

Это потребовалось для увеличения скорости обработки CISC-команд, так как известно, что любой CISC-процессор уступает RISC-процессорам по количеству выполняемых операций в секунду. В итоге, такой подход и позволил поднять производительность CPU.

Недостатки CISK архитектуры:

Высокая стоимость аппаратной части;

Сложности с распараллеливанием вычислений.

Методика построения системы команд CISC противоположна другой методике - RISC. Различие этих концепций состоит в методах программирования, а не в реальной архитектуре процессора. Практически все современные процессоры эмулируют наборы команд как RISC так и CISC типа.

В рабочих станциях, серверах среднего звена и персональных компьютерах используются процессоры с CISC. Наиболее распространенная архитектура команд процессоров мобильных уcтройств - SOC и мэйнфреймов - RISC. В микроконтроллерах различных устройств RISC используется в подавляющем большинстве случаев.

RISC -- архитектура процессора, в которой быстродействие увеличивается за счёт упрощения инструкций, чтобы их декодирование было более простым, а время выполнения -- короче. Первые RISC-процессоры даже не имели инструкций умножения и деления. Это также облегчает повышение тактовой частоты и делает более эффективной суперскалярность (распараллеливание инструкций между несколькими исполнительными блоками).

Наборы инструкций в более ранних архитектурах для облегчения ручного написания программ на языках ассемблеров или прямо в машинных кодах, а также для упрощения реализации компиляторов, выполняли как можно больше работы. Нередко в наборы включались инструкции для прямой поддержки конструкций языков высокого уровня. Другая особенность этих наборов -- большинство инструкций, как правило, допускали все возможные методы адресации -- к примеру, и операнды, и результат в арифметических операциях доступны не только в регистрах, но и через непосредственную адресацию, и прямо в памяти. Позднее такие архитектуры были названы CISC. Однако многие компиляторы не задействовали все возможности таких наборов инструкций, а на сложные методы адресации уходит много времени из-за дополнительных обращений к медленной памяти. Было показано, что такие функции лучше исполнять последовательностью более простых инструкций, если при этом процессор упрощается и в нём остаётся место для большего числа регистров, за счёт которых можно сократить количество обращений к памяти. В первых архитектурах, причисляемых к RISC, большинство инструкций для упрощения декодирования имеют одинаковую длину и похожую структуру, арифметические операции работают только с регистрами, а работа с памятью идёт через отдельные инструкции загрузки (load) и сохранения (store). Эти свойства и позволили лучше сбалансировать этапы конвейеризации, сделав конвейеры в RISC значительно более эффективными и позволив поднять тактовую частоту.

Характерные особенности RISK процессоров:

Фиксированная длина машинных инструкций (например, 32 бита) и простой формат команды.

Специализированные команды для операций с памятью -- чтения или записи. Операции вида «прочитать-изменить-записать» отсутствуют. Любые операции «изменить» выполняются только над содержимым регистров (т. н. архитектура load-and-store).

Большое количество регистров общего назначения (32 и более).

Отсутствие поддержки операций вида «изменить» над укороченными типами данных -- байт, 16-битное слово. Так, например, система команд DEC Alpha содержала только операции над 64-битными словами, и требовала разработки и последующего вызова процедур для выполнения операций над байтами, 16- и 32-битными словами.

Отсутствие микропрограмм внутри самого процессора. То, что в CISC-процессоре исполняется микропрограммами, в RISC-процессоре исполняется как обыкновенный (хотя и помещённый в специальное хранилище) машинный код, не отличающийся принципиально от кода ядра ОС и приложений. Так, например, обработка отказов страниц в DEC Alpha и интерпретация таблиц страниц содержалась в так называемом PALCode (Privileged Architecture Library), помещённом в ПЗУ. Заменой PALCode можно было превратить процессор Alpha из 64-битного в 32-битный, а также изменить порядок байтов в слове и формат входов таблиц страниц виртуальной памяти.

Рассмотрим конвейеры.

Конвемйер -- это способ организации вычислений, используемый в современных процессорах и контроллерах с целью повышения их производительности (увеличения числа инструкций, выполняемых в единицу времени), технология, используемая при разработке компьютеров.

Идея заключается в разделении обработки компьютерной инструкции на последовательность независимых стадий с сохранением результатов в конце каждой стадии. Это позволяет управляющим цепям процессора получать инструкции со скоростью самой медленной стадии обработки, однако при этом намного быстрее, чем при выполнении эксклюзивной полной обработки каждой инструкции от начала до конца.

Сам термин «конвейер» пришёл из промышленности, где используется аналогичный принцип работы -- материал автоматически подтягивается по ленте конвейера к рабочему, который осуществляет с ним необходимые действия, следующий за ним рабочий выполняет свои функции над получившейся заготовкой, следующий делает еще что-то, таким образом, к концу конвейера цепочка рабочих полностью выполняет все поставленные задачи, не срывая, однако, темпов производства. Например, если на самую медлительную операцию затрачивается одна минута, то каждая деталь будет сходить с конвейера через одну минуту.

Считается, что впервые конвейерные вычисления были использованы либо в проекте ILLIAC II (англ. en:ILLIAC II), либо в проекте IBM Stretch (англ. en:IBM Stretch). Проект IBM Stretch предложил термины «получение» (англ. «Fetch»), «расшифровка» (англ. «Decode») и «выполнение» (англ. «Execute»), которые затем стали общеупотребимыми.

Многие современные процессоры управляются тактовым генератором. Процессор внутри состоит из логических элементов и ячеек памяти -- триггеров. Когда приходит сигнал от тактового генератора, триггеры приобретают своё новое значение и логике требуется некоторое время для декодирования новых значений. Затем приходит следующий сигнал от тактового генератора, триггеры принимают новые значения, и так далее.

Разбивая последовательности логических элементов на более короткие и помещая триггеры между этими короткими последовательностями уменьшают время, необходимое логике для обработки сигналов. В этом случае длительность одного такта процессора может быть соответственно уменьшена.

При написании ассемблерного кода (либо разработке компилятора, генерирующего последовательность инструкций) делается предположение, что результат выполнения инструкций будет точно таким, как если бы каждая инструкция заканчивала выполняться до начала выполнения следующей за ней. Использование конвейера сохраняет справедливость этого предположения, однако не обязательно сохраняет порядок выполнения инструкций. Ситуация, когда одновременное выполнение нескольких инструкций может привести к логически некорректной работе конвейера, известна как «конфликт конвейера» (англ. Pipeline hazard). Существуют различные методы устранения конфликтов (форвардинг и другие).

Бесконвейерная архитектура значительно менее эффективна из-за меньшей загрузки функциональных модулей процессора в то время, пока один или небольшое число модулей выполняет свою роль во время обработки инструкций. Конвейер не убирает полностью время простоя модулей в процессорах как таковое и не уменьшает время выполнения каждой конкретной инструкции, но заставляет модули процессора работать параллельно над разными инструкциями, увеличивая тем самым количество инструкций, выполняемых за единицу времени, а значит и общую производительность программ.

Процессоры с конвейером внутри устроены так, что обработка инструкций разделена на последовательность стадий, предполагая одновременную обработку нескольких инструкций на разных стадиях. Результаты работы каждой из стадий передаются через ячейки памяти на следующую стадию, и так -- до тех пор, пока инструкция не будет выполнена. Подобная организация процессора, при некотором увеличении среднего времени выполнения каждой инструкции, тем не менее обеспечивает значительный рост производительности за счёт высокой частоты завершения выполнения инструкций.

Не все инструкции являются независимыми. В простейшем конвейере, где обработка инструкции представлена пятью стадиями, для обеспечения полной загрузки, в то время пока заканчивается обработка первой инструкции, должно обрабатываться параллельно ещё четыре последовательных независимых инструкции. Если последовательность содержит инструкции, зависимые от выполняемых в данный момент, то управляющая логика простейшего конвейера приостанавливает несколько начальных стадий конвейера, помещая этим самым в конвейер пустую инструкцию («пузырёк»), иногда неоднократно, -- до тех пор, пока зависимость не будет разрешена. Существует ряд приёмов, таких как форвардинг, значительно снижающих необходимость приостанавливать в таких случаях часть конвейера. Однако зависимость между инструкциями, одновременно обрабатываемыми процессором, не позволяет добиться увеличения производительности кратно количеству стадий конвейера в сравнении с бесконвейерным процессором.

Преимущества и недостатки.

Конвейер помогает не во всех случаях. Существует несколько возможных минусов. Конвейер инструкций можно назвать «полностью конвейерным», если он может принимать новую инструкцию каждый машинный цикл (англ. en:clock cycle). Иначе в конвейер должны быть вынужденно вставлены задержки, которые выравняют конвейер, при этом ухудшат его производительность.

Преимущества:

Время цикла процессора уменьшается, таким образом увеличивая скорость обработки инструкций в большинстве случаев.

Некоторые комбинационные логические элементы, такие как сумматоры (англ. adders) или умножители (англ. multipliers) могут быть ускорены путем увеличения количества логических элементов. Использование конвейера может предотвратить ненужное наращивание количества элементов.

Недостатки:

Беcконвейерный процессор исполняет только одну инструкцию за раз. Это предотвращает задержки веток инструкций (фактически, каждая ветка задерживается), и проблемы, связанные с последовательными инструкциями, которые исполняются параллельно. Следовательно, схема такого процессора проще и он дешевле для изготовления.

Задержка инструкций в беcконвейерном процессоре слегка ниже, чем в конвейерном эквиваленте. Это происходит из-за того, что в конвейерный процессор должны быть добавлены дополнительные триггеры.

У беcконвейерного процессора скорость обработки инструкций стабильна. Производительность конвейерного процессора предсказать намного сложнее, и она может значительно различаться в разных программах.

центральный графический процессор производитель

В процессе работы процессор обрабатывает данные, которые находятся в его регистрах, в оперативной памяти и внешних буферных устройствах процессора. Всего существует 3 информационных потока, обрабатываемых процессором:

  1. Данные подлежащие обработки

Совокупность разнообразных команд, которые может выполнить процессор над данными, образует систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах, тем дольше средняя продолжительность выполнения команд процессора. Процессоры Intelнасчитывают более 1000 команд и относятся к процессорам с расширенной системой команд (CISC).

Архитектурный облик IBMPC-совместимого компьютера определяется рядом свойств, обеспечивающих возможность функционирования программного обеспечения, управляющего подключенным оборудованием. Программы могут взаимодействовать с устройствами разными способами:

    Используя вызовы функций операционной системы(прерывания DOS,APIWindowsи т.д.);

    Используя вызовы функций базовой системы ввода-вывода (BIOS);

    Непосредственно взаимодействуя с известным им «железом» - портами и памятью устройств или контроллеров интерфейсов.

Такое разнообразие существует благодаря изначальной открытости архитектуры первых IBMPCи сохранения имеющихся решений (пускай иногда и не самых лучших) в последующих моделях, обрастающих новыми узлами.

Облик PC-совместимого компьютера в значительной степени определяется разработчиками из фирмMicrosoftиIntel. Для этих фирм стало уже традицией выпускать объемистый документ, диктующий разработчикам аппаратуры требования для получения желаемого логотипа “DesignedforMicrosoftWindows”.

В спецификациях определяются требования к функциональности и производительности всех подсистем компьютера, включая и периферийные устройства.

В настоящее время выделяют следующие типы архитектур процессора:

    RISC – возможность выполнения меньшего количества команд, но с большой скоростью Команды состоящие из более простых команд, выполняются более производительно и с большой скоростью. Недостатки: сложные алгоритмы не всегда можно разбить на последовательность простых команд.

    CISC – процессоры универсальны и могут использоваться в любых компьютерных системах.

    MISC – промежуточный тип архитектуры. Имеет внутреннее ядро микропроцессора, выполненное поRISC-архитектуре и внешнее выполненное по структуреCISC.

Слоты расширения предназначены для установки карт различного назначения, расширяющих функциональные возможности компьютера. На слоты выводятся стандартные шины расширения ввода-вывода, а также промежуточные интерфейсы, наподобие AMRиCNR. Стандартизованные шины расширения ввода-вывода обеспечивают основу функциональной расширяемостиPC-совместимого персонального компьютера, который с самого рождения не замыкался на выполнении сугубо вычислительных задач.

Шины расширения является средствами подключения системного уровня: они позволяют адаптерам и контроллерам непосредственно использовать системные ресурсы PC– пространства памяти и ввода-вывода, прерывания, каналы прямого доступа к памяти. Как следствие, изготовителям модулей расширения приходится точно следовать протоколам шины, включая жесткие частотные и нагрузочные параметры, а также временные диаграммы. Отклонения приводят к несовместимости с некоторыми системными платами. Если при подключении к внешним интерфейсам это ведет к неработоспособности только самого устройства, то некорректное подключение к системной шине может блокировать работу всего компьютера. Следует также учитывать ограниченность ресурсовPC. Самые дефицитные из них – линии запросов прерываний, проблема прерываний, известная по шинеISA, так и не была радикально решена с переходом наPCI. Другой дефицит – каналы прямого доступа шиныISA, используемые и для прямого управления шиной, - в шинеPCIисчез. Доступное адресное пространство памяти и портов ввода-вывода, в котором было тесновато абонентам шиныISA, вPCIсущественно расширено. Проблемы распределения ресурсов на шинах решаются по-разному, но чаще всего применяется технологияPnP.

В современных настольных компьютерах основной шиной расширения является PCI, портAGPприсутствует практически повсеместно, шинаISA, несмотря на рекомендации отойти от нее, сохраняется как средство подключения старых карт расширений.

Выделяют 3 вида шин:

    Шина данных

    Адресная шина

    Шина команд

Шина данных – происходит копирование данных из оперативной памяти, в регистре процессора и наоборот. 64 разрядная.

Адресная шина – данные, которые передаются, трактуются как адреса ячеек оперативной памяти. С помощью этой шины процессор считывает адреса команд, которые надо выполнить, а также данные, которыми оперируют команды. 32-разрядная.

Шина команд (управления)– поставляет команды, которые выполняет процессором. Простые команды укладываются в один байт, более сложные в 2,3 байта. 32-разрядная.

Магистрально-модульный принцип построения компьютера

Шины на материнской плате используют не только для связи с процессором, все остальные устройства ЭВМ тоже подключаются с помощью шин.

    ISA – позволяет связать между собой все устройства в системном блоке, а так же обеспечить подключение новых устройств через стандартные слоты. Пропускная способность составляет 5,5 Мб в секунду. Сейчас используют только для подключения внешних устройств, которые не требуют большой пропускной способности (звук, модемы).

    EISA - 32-битная шина средней производительности, применяемая в основном для подключения контроллеров дисков и адаптеров локальных сетей в серверах. В настоящее время вытеснена шинойPCI. Раньше применялась в серверных платформах, где необходимо устанавливать множество дополнительных плат расширения. В слотEISAможно устанавливать картыISA(но не наоборот). Пропускная способность до 32-Мб-в секунду.

    VLB – локальная шина, которая представляет собой соединение процессора с оперативной памятью в обход основной магистральной шины. Эта шина работает на более высокой частоте и позволяет увеличить скорость передачи данных. Эта шина имеет интерфейс для подключения видео адаптера необходимого для подключения монитора в состав вычислительного комплекса. Пропускная способность до 130 Мб в секунду. Рабочая тактовая частота – 50 МГц. Зависит от типа устройств подключаемых к этой шине.

    PCI – стандарт подключения внешних устройств который введен дляPentium. По своей сути это интерфейс - локальные шины с разъемами для подключения внешних компонентов вычислительных систем. Тактовая частота - до 166 МГц и обеспечивает передачу информации со скоростью 264 Мб в секунду независимо от количества подключенных устройств. С введением этого стандарта появилась возможность для подключения технологии “Plug&Play”: после физического подключения устройства обеспечивается автоматическая конфигурация в составе вычислительной системы.

    FSB – шина, которая используется для связи процессора с оперативной памятью компьютера, эта шина работает на частоте 133-МГц и выше. Пропускная способность до 800 Мб/сек. Частота работы шиныFSBявляется основным параметром, который указывается в спецификации материнской платы.

    AGP – специальный шинный интерфейс, который предназначен для подключения видео адаптера. Этот интерфейс необходим в современных вычислительных устройствах, потому что параметры шиныPCIне отвечают требованиям видеоадаптера по быстродействию. Пропускная способность 1066 Мб/сек. В отличие от шиныPCIдля портаAGPвозникают проблемы совместимости карт акселераторов с типом системной платы (чипсета) и процессора даже при формальном соответствии их параметров.

    USB – стандарт универсальной последовательной шины, который определяет способ взаимодействия компьютера с современным периферийном оборудованием. Этот порт разрешает подключать 256 различных устройств с последовательным интерфейсом, причем устройства могут подключаться последовательно (цепочкой). Преимущество этого стандарта в том, что периферийное устройство можно подключать. Во время текущего сеанса работы без перезагрузки. Этот порт позволяет соединять компьютеры в сеть без использования специальной аппаратуры и программного обеспечения.

Конфигурирование шин расширения предполагает в основном настройку их временных параметров:

    Для шины PCIзадается частота синхронизации, кроме того, сCMOSSetupдля этой шины могут определяться некоторые её возможные режимы – конкурентные обращения, слежение за палитрами.

    Для порта AGPзадается частота, поддерживаемые режимы, а также апертурыAGP.

    Для шин ISAиPCIиногда настройкамиCMOSSetupприходится распределять системные ресурсы (главным образом, линии запросов прерываний).

    Для шины ISAкроме частоты (которая должна быть порядка 8 МГц) задают время восстановления для 8- и 16-битных обращений к памяти и вводу-выводу. Неустойчивая работа адаптеров может потребовать замедления шиныISA, но в настоящее время понижение её производительности не сильно отражается на производительности компьютера в целом.

Типы архитектур процессоров

В процессе работы процессор обрабатывает данные, которые находятся в его регистрах, в оперативной памяти и внешних буферных устройствах процессора. Всего существует 3 информационных потока, обрабатываемых процессором:

  1. Команды
  2. Адреса
  3. Данные подлежащие обработки

Совокупность разнообразных команд, которые может выполнить процессор над данными, образует систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах, тем дольше средняя продолжительность выполнения команд процессора. Процессоры Intel насчитывают более 1000 команд и относятся к процессорам с расширенной системой команд (CISC).

Архитектурный облик IBM PC-совместимого компьютера определяется рядом свойств, обеспечивающих возможность функционирования программного обеспечения, управляющего подключенным оборудованием. Программы могут взаимодействовать с устройствами разными способами:

  • Используя вызовы функций операционной системы(прерывания DOS, API Windows и т.д.);
  • Используя вызовы функций базовой системы ввода-вывода (BIOS);
  • Непосредственно взаимодействуя с известным им «железом» - портами и памятью устройств или контроллеров интерфейсов.

Такое разнообразие существует благодаря изначальной открытости архитектуры первых IBM PC и сохранения имеющихся решений (пускай иногда и не самых лучших) в последующих моделях, обрастающих новыми узлами.

Облик PC-совместимого компьютера в значительной степени определяется разработчиками из фирм Microsoft и Intel. Для этих фирм стало уже традицией выпускать объемистый документ, диктующий разработчикам аппаратуры требования для получения желаемого логотипа “Designed for Microsoft Windows”.

В спецификациях определяются требования к функциональности и производительности всех подсистем компьютера, включая и периферийные устройства.

В настоящее время выделяют следующие типы архитектур процессора:

  • RISC – возможность выполнения меньшего количества команд, но с большой скоростью Команды состоящие из более простых команд, выполняются более производительно и с большой скоростью. Недостатки: сложные алгоритмы не всегда можно разбить на последовательность простых команд.
  • CISC – процессоры универсальны и могут использоваться в любых компьютерных системах.
  • MISC – промежуточный тип архитектуры. Имеет внутреннее ядро микропроцессора, выполненное по RISC-архитектуре и внешнее выполненное по структуре CISC.

Шины.

Слоты расширения предназначены для установки карт различного назначения, расширяющих функциональные возможности компьютера. На слоты выводятся стандартные шины расширения ввода-вывода, а также промежуточные интерфейсы, наподобие AMR и CNR. Стандартизованные шины расширения ввода-вывода обеспечивают основу функциональной расширяемости PC-совместимого персонального компьютера, который с самого рождения не замыкался на выполнении сугубо вычислительных задач.

Шины расширения является средствами подключения системного уровня: они позволяют адаптерам и контроллерам непосредственно использовать системные ресурсы PC – пространства памяти и ввода-вывода, прерывания, каналы прямого доступа к памяти. Как следствие, изготовителям модулей расширения приходится точно следовать протоколам шины, включая жесткие частотные и нагрузочные параметры, а также временные диаграммы. Отклонения приводят к несовместимости с некоторыми системными платами. Если при подключении к внешним интерфейсам это ведет к неработоспособности только самого устройства, то некорректное подключение к системной шине может блокировать работу всего компьютера. Следует также учитывать ограниченность ресурсов PC. Самые дефицитные из них – линии запросов прерываний, проблема прерываний, известная по шине ISA, так и не была радикально решена с переходом на PCI. Другой дефицит – каналы прямого доступа шины ISA, используемые и для прямого управления шиной, - в шине PCI исчез. Доступное адресное пространство памяти и портов ввода-вывода, в котором было тесновато абонентам шины ISA, в PCI существенно расширено. Проблемы распределения ресурсов на шинах решаются по-разному, но чаще всего применяется технология PnP.

В современных настольных компьютерах основной шиной расширения является PCI, порт AGP присутствует практически повсеместно, шина ISA, несмотря на рекомендации отойти от нее, сохраняется как средство подключения старых карт расширений.

Выделяют 3 вида шин:

  1. Шина данных
  2. Адресная шина
  3. Шина команд

Шина данных – происходит копирование данных из оперативной памяти, в регистре процессора и наоборот. 64 разрядная.

Адресная шина – данные, которые передаются, трактуются как адреса ячеек оперативной памяти. С помощью этой шины процессор считывает адреса команд, которые надо выполнить, а также данные, которыми оперируют команды. 32-разрядная.

Шина команд (управления)– поставляет команды, которые выполняет процессором. Простые команды укладываются в один байт, более сложные в 2,3 байта. 32-разрядная.

Шины на материнской плате используют не только для связи с процессором, все остальные устройства ЭВМ тоже подключаются с помощью шин.

  • ISA – позволяет связать между собой все устройства в системном блоке, а так же обеспечить подключение новых устройств через стандартные слоты. Пропускная способность составляет 5,5 Мб в секунду. Сейчас используют только для подключения внешних устройств, которые не требуют большой пропускной способности (звук, модемы).
  • EISA - 32-битная шина средней производительности, применяемая в основном для подключения контроллеров дисков и адаптеров локальных сетей в серверах. В настоящее время вытеснена шиной PCI. Раньше применялась в серверных платформах, где необходимо устанавливать множество дополнительных плат расширения. В слот EISA можно устанавливать карты ISA(но не наоборот). Пропускная способность до 32-Мб-в секунду.
  • VLB – локальная шина, которая представляет собой соединение процессора с оперативной памятью в обход основной магистральной шины. Эта шина работает на более высокой частоте и позволяет увеличить скорость передачи данных. Эта шина имеет интерфейс для подключения видео адаптера необходимого для подключения монитора в состав вычислительного комплекса. Пропускная способность до 130 Мб в секунду. Рабочая тактовая частота – 50 МГц. Зависит от типа устройств подключаемых к этой шине.
  • PCI – стандарт подключения внешних устройств который введен для Pentium. По своей сути это интерфейс - локальные шины с разъемами для подключения внешних компонентов вычислительных систем. Тактовая частота - до 166 МГц и обеспечивает передачу информации со скоростью 264 Мб в секунду независимо от количества подключенных устройств. С введением этого стандарта появилась возможность для подключения технологии “Plug & Play”: после физического подключения устройства обеспечивается автоматическая конфигурация в составе вычислительной системы.
  • FSB – шина, которая используется для связи процессора с оперативной памятью компьютера, эта шина работает на частоте 133-МГц и выше. Пропускная способность до 800 Мб/сек. Частота работы шины FSB является основным параметром, который указывается в спецификации материнской платы.
  • AGP – специальный шинный интерфейс, который предназначен для подключения видео адаптера. Этот интерфейс необходим в современных вычислительных устройствах, потому что параметры шины PCI не отвечают требованиям видеоадаптера по быстродействию. Пропускная способность 1066 Мб/сек. В отличие от шины PCI для порта AGP возникают проблемы совместимости карт акселераторов с типом системной платы (чипсета) и процессора даже при формальном соответствии их параметров.
  • USB – стандарт универсальной последовательной шины, который определяет способ взаимодействия компьютера с современным периферийном оборудованием. Этот порт разрешает подключать 256 различных устройств с последовательным интерфейсом, причем устройства могут подключаться последовательно (цепочкой). Преимущество этого стандарта в том, что периферийное устройство можно подключать. Во время текущего сеанса работы без перезагрузки. Этот порт позволяет соединять компьютеры в сеть без использования специальной аппаратуры и программного обеспечения.

Конфигурирование шин расширения предполагает в основном настройку их временных параметров:

  • Для шины PCI задается частота синхронизации, кроме того, с CMOS Setup для этой шины могут определяться некоторые её возможные режимы – конкурентные обращения, слежение за палитрами.
  • Для порта AGP задается частота, поддерживаемые режимы, а также апертуры AGP.
  • Для шин ISA и PCI иногда настройками CMOS Setup приходится распределять системные ресурсы (главным образом, линии запросов прерываний).
  • Для шины ISA кроме частоты (которая должна быть порядка 8 МГц) задают время восстановления для 8- и 16-битных обращений к памяти и вводу-выводу. Неустойчивая работа адаптеров может потребовать замедления шины ISA, но в настоящее время понижение её производительности не сильно отражается на производительности компьютера в целом.

В аспекте прикладной деятельности.

С точки зрения программиста - совместимость с определённым набором команд (например, процессоры, совместимые с командами Intel х86), их структуры (например, систем адресации или организации регистровой памяти) и способа исполнения (например, счетчик команд).

С точки зрения аппаратной составляющей вычислительной системы - это некий набор свойств и качеств, присущий целому семейству процессоров (иначе говоря - «внутренняя конструкция», «организация» этих процессоров). Имеются различные классификации архитектур процессоров, как по организации (например, по количеству и скорости выполнения команд: RISC , CISC), так и по назначению (например, специализированные графические).

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Архитектура процессора" в других словарях:

    Архитектура процессора - Базовый набор ключевых возможностей того или иного поколения процессоров. По названиям архитектур специалисты отличают тот или иной подвид чипов. Например, Pentium III и Pentium 4. Современные процессоры для мобильных ПК изготавливаются с… … Глоссарий терминов бытовой и компьютерной техники Samsung

    архитектура процессора с изменяемой вычислительной мощностью - Разработана в фирме Sun. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN scalable processor architectureSPARC …

    архитектура контроллера Справочник технического переводчика

    архитектура контроллера - Архитектурой контроллера называют набор его основных компонентов и связей между ними. Типовой состав ПЛК включает центральный процессор, память, сетевые интерфейсы и устройства ввода вывода. Типовая… … Справочник технического переводчика

    Архитектура современного персонального компьютера это схема его чипсета, которую можно найти на сайтах производителей Intel и AMD.Чипсет это набор микросхем материнской платы для обеспечения работы процессора с памятью и внешними устройствами.… … Википедия

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Викифицировать статью. Архитектура вычислительной машины (Архитектура … Википедия

    ARM процессор производства Conexant, ставится в основном в маршрутизаторах (ранее Advanced RISC Machine усовершенствованная ARM Limited. Эта архитектура широко используется в разработке встраиваемых систем. Это связанно с тем, что данные… … Википедия

    - … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Архитектура персонального компьютера компоновка его основных частей, таких как процессор, ОЗУ, видеоподсистема, дисковая система, периферийные… … Википедия

    Эту страницу предлагается объединить с Система команд. Пояснение причин и обсуждение на странице Википедия:К объединению/6 ноября 2011. Обсуждение длится одну неделю (или дольш … Википедия

Книги

  • Цифровая схемотехника и архитектура компьютера , Харрис Д.М.. Это дополнительный тираж книги с добавленным Предметным указателем, напечатанный черным и синим цветом как оригинальное американское издание! Также в новом издании исправлены неточности,…
  • Архитектура ЭВМ и вычислительные системы. Учебник , В. В. Степина. Рассмотрены информационно-логические основы электронно-вычислительной техники, типовые логические элементы и устройства ЭВМ, структура и функционирование процессора, принципы организации и…

Введение

1. 8086: первый процессор для ПК

3. Переход к двуядерным процессорам

4. Виртуализация

5. Кратко о некоторых других технологиях

6. Будущие технологии

Библиографический список


Введение

Процессор (или центральный процессор, ЦП) - это транзисторная микросхема, которая является главным вычислительным и управляющим элементом компьютера.

Английское название процессора - CPU (Central Processing Unit).

Процессор представляет собой специально выращенный полупроводниковый кристалл, на котором располагаются транзисторы, соединенные напыленными алюминиевыми проводниками. Кристалл помещается в керамический корпус с контактами.

В первом процессоре компании Intel - i4004, выпущенном в 1971 году, на одном кристалле было 2300 транзисторов, а в процессоре Intel Pentium 4, выпущенном 14 апреля 2003 года, их уже 55 миллионов.Современные процессоры изготавливаются по 0,13-микронной технологии, т.е. толщина кристалла процессора, составляет 0,13 микрон. Для сравнения - толщина кристалла первого процессора Intel была 10 микрон.

Рисунок 1 – принципиальная схема процессора

Управляющий блок - управляет работой всех блоков процессора.

Арифметико-логический блок - выполняет арифметические и логические вычисления.

Регистры - блок хранения данных и промежуточных результатов вычислений - внутренняя оперативная память процессора.

Блок декодировки - преобразует данные в двоичную систему.

Блок предварительной выборки - получает команду от устройства (клавиатура и т.д.) и запрашивает инструкции в системной памяти.

Кэш-память (или просто кэш) 1-го уровня - хранит часто использующиеся инструкции и данные.

Кэш-память 2-го уровня - хранит часто использующиеся данные.

Блок шины - служит для ввода и вывода информации.

Эта схема соответствует процессорам архитектуры P6. По этой архитектуре создавались процессоры с Pentium Pro до Pentium III. Процессоры Pentium 4 изготавливаются по новой архитектуре Intel® NetBurst.

В процессорах Pentium 4 кэш 1-го уровня поделен на две части - кэш данных и кэш команд.

Существует два типа тактовой частоты - внутренняя и внешняя.

Внутренняя тактовая частота - это тактовая частота, с которой происходит работа внутри процессора.

Внешняя тактовая частота или частота системной шины - это тактовая частота, с которой происходит обмен данными между процессором и оперативной памятью компьютера.

До 1992 года в процессорах внутренняя и внешняя частоты совпадали, а в 1992 году компания Intel представила процессор 80486DX2, в котором внутренняя и внешняя частоты были различны - внутренняя частота была в 2 раза больше внешней. Было выпущено два типа таких процессоров с частотами 25/50 МГц и 33/66 МГц, затем Intel выпустила процессор 80486DX4 с утроенной внутренней частотой (33/100 МГц).

С этого времени остальные компании-производители также стали выпускать процессоры с удвоенной внутренней частотой, а компания IBM стала выпускать процессоры с утроенной внутренней частотой (25/75 МГц, 33/100 МГц и 40/120 МГц).

В современных процессорах, например, при тактовой частоте процессора 3 ГГц, частота системной шины 800 МГц.

Для чего предназначены дополнительные наборы команд? В первую очередь - для увеличения быстродействия при выполнении некоторых операций. Одна команда из дополнительного набора, как правило, выполняет действие, для которого понадобилась бы небольшая программа, состоящая из команд основного набора. Опять-таки, как правило, одна команда выполняется процессором быстрее, чем заменяющая ее последовательность. Однако в 99% случаев, ничего такого, чего нельзя было бы сделать с помощью основных команд, с помощью команд из дополнительного набора сделать нельзя. Таким образом, упомянутая выше проверка программой поддержки дополнительных наборов команд процессором, должна выполнять очень простую функцию: если, например, процессор поддерживает SSE - значит, считать будем быстро и с помощью команд из набора SSE. Если нет - будем считать медленнее, с помощью команд из основного набора. Корректно написанная программа обязана действовать именно так. Впрочем, сейчас практически никто не проверяет у процессора наличие поддержки MMX, так как все CPU, вышедшие за последние 5 лет, этот набор поддерживают гарантированно. Для справки приведем таблицу, на которой обобщена информация о поддержке различных расширенных наборов команд различными десктопными (предназначенными для настольных ПК) процессорами.

Таблица 1

Сравнение основных наборов команд

Процессор MMX EMMX 3DNow! SSE E3DNow! SSE2 SSE3
Intel Pentium II + - - - - - -
Intel Celeron до 533 MHz + - - - - - -
Intel Pentium III + - - + - - -
Intel Celeron 533-1400 MHz + - - + - - -
Intel Pentium 4 + - - + - + +/-*
Intel Celeron от 1700 MHz + - - + - + -
Intel Celeron D + - - + - + +
Intel Pentium 4 eXtreme Edition + - - + - + +/-*
Intel Pentium eXtreme Edition + - - + - + +
Intel Pentium D + - - + - + +
AMD K6 + + - - - - -
AMD K6-2 + + + - - - -
AMD K6-III + + + - - - -
AMD Athlon + + + - + - -
AMD Duron до 900 MHz + + + - + - -
AMD Athlon XP + + + + + - -
AMD Duron от 1000 MHz + + + + + - -
AMD Athlon 64 / Athlon FX + + + + + + +/-*
AMD Sempron + + + + + +/-* +/-*
AMD Athlon 64 X2 + + + + + + +
VIA C3 + + +/-* +/- - - -

* в зависимости от модификации

В 1970г. доктор Маршиан Эдвард Хофф с командой инженеров из Intelсконструировал первый микропроцессор. Во всяком случае, так принято считать – хотя на самом деле еще в 1968 году инженеры Рэй Холт и Стив Геллер создали подобную универсальную микросхему SLFдля бортового компьютера истребителя F-14. Первый процессор работал на частоте 750 кГц. Сегодняшние процессоры от Intelбыстрее своего прародителя более чем в десять тысяч раз

Тактовая частота – это то количество элементарных операций (тактов), которые процессор может выполнить в течение секунды. Еще недавно этот показатель был для пользователей не то, что самым важным – единственным значимым! Многие пользователи пытались «разогнать» свой процессор при помощи специальных программ. Впрочем, частота процессоров и безо всякого разгона возрастала в геометрической прогрессии – в полном соответствии с так называемым «законом Мура» (в свое время Гордон Мур предсказал, что каждые полтора года частота микропроцессоров будет удваиваться вместе с числом транзисторов на кристалле). Этот принцип успешно работал вплоть до 2004 г. – пока на пути инженеров Intelне встали законы физики. Ведь размеры транзисторов «ужимать» до бесконечности нельзя. Уже сегодня процессоры производятся по 65-наномикронной технологии (технология 65 нанометров), а толщина «подложки» транзисторов не превышает 1 нм (всего 5 атомов). В ближайшие годы размеры транзисторов могут сократиться до 22 нм, что близко к физическому пределу. Одновременно с уменьшением размеров транзисторов резко возрастает количество тепла, которое выделяет работающий процессор – например у последних моделей Pentiumтепловыделение составляет около 120 ватт (что соответствует двум бытовым электролампам)!


1. 8086: первый процессор для ПК

8086 стал первым процессором x86 - Intel к тому времени уже выпустила модели 4004, 8008, 8080 и 8085. Этот 16-битный процессор мог работать с 1 Мбайт памяти по внешней 20-битной адресной шине. Тактовая частота, выбранная IBM (4,77 МГц) была довольно низкой, и к концу своей карьеры процессор работал на 10 МГц. Первые ПК использовали производную процессора 8088, которая имела всего 8-битную внешнюю шину данных. Что интересно, системы управления в американских шаттлах используют процессоры 8086, и NASA пришлось в 2002 году покупать процессоры через eBay, поскольку Intel их больше не производила.

Таблица 2

Характеристики 8086

Intel 8086
Кодовое название Н/Д
Дата выпуска 1979
Тактовая частота 4,77-10 МГц

80286: 16 Мбайт памяти, но всё ещё 16 битов

Выпущенный в 1982 году, процессор 80286 был в 3,6 раза быстрее 8086 на той же тактовой частоте. Он мог работать с памятью объёмом до 16 Мбайт, но 286 всё ещё оставался 16-битным процессором. Он стал первым процессором x86, оснащённым диспетчером памяти (memory management unit, MMU), который позволял работать с виртуальной памятью. Подобно 8086, процессор не содержал блока работы с плавающей запятой (floating-point unit, FPU), но мог использовать чип-сопроцессор x87 (80287). Intel выпускала 80286 на максимальной тактовой частоте 12,5 МГц, хотя конкурентам удалось добиться 25 МГц.


Таблица 3

Характеристики 8026

Intel 80286
Кодовое название Н/Д
Дата выпуска 1982
Тактовая частота 6-12 МГц

386: 32-битный и с кэш-памятью

Intel 80836 стал первым процессором x86 с 32-битной архитектурой. Вышло несколько версий этого процессора. Две наиболее известные: 386 SX (Single-word eXternal), который использовал 16-битную шину данных, и 386 DX (Double-word eXternal) с 32-битной шиной данных. Можно отметить ещё две версии: SL, первый процессор x86 с поддержкой кэша (внешнего) и 386EX, который использовался в космической программе (например, телескоп "Хаббл" использует этот процессор).